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Abstract. Ecological theory often fails applied ecologists in three ways: (1) theory has little
predictive value but is nevertheless applied in conservation with a risk of perverse outcomes; (2)
individual theories have limited heuristic value for planning and framing research because they
are narrowly focused and; (3) theory can lead to poor communication among scientists and
hinder scientific progress through inconsistent use of terms and widespread redundancy. New
approaches are therefore needed that improve the distillation, communication and application of
ecological theory. We advocate three approaches to resolve these problems: (1) improve
prediction by reviewing theory across case-studies to develop contingent theory where possible;
(2) plan new research using a checklist of phenomena to avoid the narrow heuristic value of
individual theories; (3) improve communication among scientists by rationalizing theory
associated with particular phenomena to purge redundancy and by developing definitions for key
terms. We explore the extent to which these problems and solutions have featured in two case
studies of long-term ecological research programs in forests and plantations of south eastern
Australia. We find that our main contentions are supported regarding the prediction, planning
and communication limitations of ecological theory. We illustrate how inappropriate application
of theory can be overcome or avoided by investment in boundary-spanning actions. The case
studies also demonstrate how some of our proposed solutions could work, particularly the use of
theory in secondary case studies after developing primary case studies without theory. When
properly coordinated and implemented through a widely agreed upon and broadly respected
international collaboration, the framework that we present will help to speed the progress of

ecological research and lead to better conservation decisions.
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INTRODUCTION

The field of conservation biology presents a contradiction in the way it uses ecological theory.
On one hand, theory is deeply embedded within the field, and is applied directly or indirectly in
conservation decision-making (Doak and Mills 1994, Simberloff 1998). On the other hand, most
papers published in conservation journals make little or no use of theory (With 1997, Fazey et al.
2005). Ecological theory is being used for making resource-management decisions, but applied

ecologists most often report research as though theory does not exist.

We believe this is a problem. If few applied ecologists work to develop theory, then the theory
used for supporting decision-making will improve at a slow pace, if at all. However,
improvement is needed because application of contemporary ecological theory can lead to
detrimental management outcomes (Shrader-Frechette and McCoy 1993, Doak and Mills 1994,
Harrison 1994). Further, accelerated progress is demanded as the conservation challenges facing
land managers continue to increase. Decisions must be made in the context of the global
biodiversity crisis (Koh et al. 2004, Stork 2010), made worse by climate change and increasing
demand for resources (Ayres 2000, Butchart et al. 2010). For ecologists to provide information
and guidance at the pace demanded, we first need to have theory that can make reasonable
predictions about the consequences of management interventions. We also need to be able to
plan and frame research that addresses the most important conservation and ecological questions,

and we need to communicate our research results to one another effectively.

Ecological theory has the potential to support these needs for prediction, research planning, and

communication among scientists. But how well does theory perform in each of these roles and
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where does it fail? We present three challenging answers. We contend that, currently, theory
often fails in prediction because the spatial, temporal and taxonomic circumstances in which a
theory applies are often not defined and this failure of prediction can lead to perverse
management outcomes. We show that theory can often have limited research-planning value
because individual theories span a narrow range of concepts. Finally, we argue the proliferation
of theory limits communication among scientists and hinders scientific progress because terms
are poorly defined, and because much theory is redundant. To address these weaknesses, we
present specific suggestions that build on the concept of integration of ecological theory (Pickett
et al. 1994) and is aimed at improving the way theory is used in applied ecology (Table 1, Fig.
1). We then challenge our arguments about the limitations of theory using two long-term
research programs. These case studies provide direct evidence that the way theory is currently
used can limit research progress, but they also illustrate some of the possible solutions. We argue
that, ultimately, the framework we present will improve the use of ecological theory in
conservation, supporting more rapid accumulation of knowledge. Combined with improved
cross-boundary communication, ecologists will be better able to promote informed conservation

management.

THEORY - DEFINITION

Different terminology and emphases are used by different authors to define theory (c.f. Pickett et
al. 1994, Ford 2000). A discussion of definitions of theory is not one of our goals, but we agree
with Pickett et al (2004) that theory is a system of conceptual constructs. Pickett et al. (1994) and
Ford (2000) emphasised that such systems consist of several components including axioms or

assumptions, hypotheses (testable statements), and concepts (labeled phenomena). The simplest



98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Driscoll and Lindenmayer

form of a theory therefore consists of a testable hypothesis, and the associated assumptions and

concepts, although such a theory may be nested within a larger body of theory.

PREDICTION

When supported by empirical evidence, theory can predict ecological change and support
management decisions. For example, incidence function models based on metapopulation theory
can predict patterns of landscape occupancy and change for well-studied species (Hanski et al.
1996). The British butterfly Hesperia comma exhibits population structure and dynamics that
satisfy the main assumptions of metapopulation theory (Thomas et al. 1986, Hill et al. 1996). On
this basis, Wilson et al. (2009) were able to apply a metapopulation model, with parameters
estimated using data from a landscape of over 100 sites. In three of four test landscapes, the
predicted changes in distribution over 18 years were well matched with the observations.
Similarly, a patch-occupancy model for the Florida scrub lizard (Sceloporus woodi) developed in
one landscape was able to accurately predict patch occupancy in two test landscapes (Hokit et al.
1999). When a predictive capacity has been proven for a species, metapopulation models can be
used to rank management alternatives for improving landscape connectivity and reducing the risk
of metapopulation extinction (Drechsler et al. 2003, Nicholson and Possingham 2007, Wilson et

al. 2010).

In contrast with empirically verified, local application of theory, substantial evidence spanning
two decades demonstrates that ecological theory has very limited general predictive capacity
(Peters 1991, Shrader-Frechette and McCoy 1993, Caughley 1994, Doak and Mills 1994,

Schemske et al. 1994, Lawton 1999). Earlier critics (Shrader-Frechette and McCoy 1993, Doak
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and Mills 1994) focused on metapopulation and island biogeography theories, demonstrating that
the idiosyncrasies of particular ecological systems made prediction unreliable. Other popular
ecological theories suffer from similar weaknesses. For example, although there is some
evidence supporting the intermediate disturbance hypothesis, most cases do not support
predictions of higher diversity at medium disturbance levels (Mackey and Currie 2001).
Similarly, edge effects that include elevated nest predation or parasitism have been observed in
north-western Europe and parts of North America, but predictions often do not hold in Central
Europe, Central America, Australia and many tropical landscapes (Lahti 2001, Batary and Baldi
2004, Ries et al. 2004, Hausmann et al. 2005, Lindenmayer and Fischer 2006). We have recently
examined the application of assembly rules, metacommunity and metapopulation theory and
found that these common theories had no, or very little predictive value in a series of case studies
(Driscoll 2008, Driscoll and Lindenmayer 2009, Driscoll et al. 2010, Driscoll and Lindenmayer
2010). As a final example, general predictions about conservation management have emerged
from demographic theory (Sinclair 1996) but species-level idiosyncrasies and temporal variation
have made predictions weak. Attempts to link mammal population growth with age of first
female reproduction (Hone et al. 2010) indicated extremely wide confidence limits due to
species-specific responses. Additional uncertainty arose from temporal variation in age of first
reproduction (Hone et al. 2010). Hone et al. (2010) warn that a case-by-case evaluation of
precision is needed. Our point here is that if theory is applied to new situations for which there is
no relevant empirical data, the literature suggests that more often than not, theory will fail to

describe that new system.
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Despite ecological theory lacking general predictive capacity, theory is frequently applied in
conservation and land management with the implicit assumption that predictions from theory
provide a reasonable guide for management. For example, assumptions about connectivity,
metapopulation dynamics, and patch-matrix landscapes are common in tools for landscape
planning (Hersperger 2006, Termorshuizen et al. 2007) and reserve design (Nicholson et al.
2006, Edwards et al. 2010). Ecological theory underlies many scenario-planning approaches in
ecology (Cumming 2007), and these are widely applied in environmental planning (Palomo et al.
2011). Theory has also been applied directly to support, for example, biodiversity management
strategies based on keystone, indicator or ecosystem-process theories (Simberloff 1998),
networks of small reserves based on metapopulation theory (as discussed by Harrison 1994), and

corridor construction arising from fragmentation theory (Russell 1994).

With weak predictive capacity, the application of theory in conservation can lead to management
mistakes. For example, in north-western USA, forest logging options were identified on the basis
of population viability analysis (PVA) of the Northern spotted owl Strix occidentalis caurina
(Harrison 1994). Subsequent scrutiny of the models in court revealed the metapopulation
assumptions of the PVA were poorly supported. Management based on theory was deemed to be
a substantial threat to the Northern spotted owl (Harrison 1994). Other examples of the potential
for management mistakes include; metapopulation theory applied to captive populations of
Puerto Rican Parrots Amazona vittata (Lacy et al. 1989, Wilson et al. 1994), patch-matrix
assumptions applied in managing boreal forest birds (Schmiegelow and Monkkonen 2002),
indicator species concepts applied in forest management (Simberloff 1998, Lindenmayer and

Likens 2011), the intermediate disturbance hypothesis applied to fire management in an
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Australian national park (Lindenmayer et al. 2008d, Lindenmayer et al. 2008e), and landscape-
planning tools used for predicting the distribution of small mammal habitat (Corry and Nassauer
2005). Given the pervasive use of theory in conservation and the potential for management

mistakes, there is substantial motivation for applied ecologists to use theory more effectively.

RESEARCH PLANNING AND FRAMING

The early critics of applying theory in conservation and ecology nevertheless emphasised that
theory is still valuable because it provides important conceptual frameworks to motivate and
guide research (Shrader-Frechette and McCoy 1993, Doak and Mills 1994, Schemske et al.
1994). Metapopulation theory is a good example (Doak and Mills 1994, Krohne 1997, Esler
2000, Driscoll 2007). Even though a species may not conform to a particular type of
metapopulation, effective species management depends on understanding the processes that are
highlighted by metapopulation theory such as dispersal and persistence of local populations
(Hanski 1999, Hanski and Gaggiotti 2004). Research addressing the questions that arise from
metapopulation theory will lead to new knowledge that better identifies theory relevant to a
given system, and contributes general insight into how common particular phenomena might be
(Driscoll 2007). By investigating one theory, a researcher may learn that alternative theories are
more likely to apply. An important role of theory is therefore to alert the researcher to the range
of possible ecological phenomena, to guide the formulation of research questions about the most
important processes or patterns, and to help structure learning such as through rejection of initial

theories and elaboration of alternatives.
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This planning and framing function of theory has a negative side. With a pivotal role in setting
up research questions, theory can constrain the design of experiments, limiting the scope of
questions that are asked and the approaches that are taken. For example, Haila (2002) argued that
the popularity of island biogeography theory constrained much research to questions about the
influence of patch size on species richness, but these questions often have limited relevance in
conservation. Working within the conceptual domain of island biogeography prevented a focus
on other questions that are important for conservation, particularly about how species use the
matrix, habitat loss, fragmentation and causes of extinction (Haila 2002). Similarly, the patch-
matrix assumption of metapopulation theory leads to a focus on presence or absence of a species
in the matrix. However, in many landscapes, there may be a continuum of landscape use (Austin
1999a, Fischer and Lindenmayer 2006). Using a patch-matrix model, conservation attention is
directed towards creating habitat patches and connections, whereas in some systems it is possible
that more substantial conservation gains could be made by altering the "matrix™ (Franklin 1993,
Fahrig 2001, Fischer and Lindenmayer 2006), by increasing the total amount of habitat
(Schmiegelow and Monkkonen 2002, Fahrig 2003), or improving patch condition (Harrison and

Bruna 1999).

The narrow conceptual domain of theory can slow the rate of knowledge acquisition. For
example, edge effects theory emphasizes interactions between species at the boundary of
adjacent vegetation types, and much research has focussed on how predator-prey interactions are
influenced by the nature of the edge (Paton 1994, Lahti 2001, Sisk 2007). However, in a review
of predator-prey theory, Ryall and Fahrig (2006) argued that faster progress in understanding

interactions between predators and their prey in patchy landscapes required a landscape scale
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approach. The popularity of edge theory, combined with its emphasis on the patch scale, may
have slowed progress in the field by directing much research towards questions that were not the
most important for understanding the phenomenon (Ryall and Fahrig 2006). More rapid research
progress is therefore likely when a broad conceptual framework is used for guiding and

interpreting research rather than a narrow focus on particular theory.

COMMUNICATION AMONG SCIENTISTS

While theory can fail in its predictive and planning roles at the beginning of the research cycle,
theory should nevertheless be useful towards the end of the cycle as a communications tool. The
practicalities of communicating with an international scientific audience demand that a common
set of terms is available for describing particular phenomena. Researchers who study different
taxonomic groups on opposite sides of the globe can nevertheless find common ground through
shared concepts and in practice, through literature searches for shared key-words associated with
a particular theory (e.g. Akcakaya et al. 2004, Ranius 2007). Given the potential explanatory
value of theory in particular case-studies, theory could provide an essential set of concepts that
facilitate effective communication. For example, metapopulation theory includes a well defined
set of metapopulation types based on variation in extinction risk, dispersal rate, the rate of
extinction relative to colonization and the cause of extinctions (stochastic or deterministic)
(Harrison and Taylor 1997, Hanski 1999, Driscoll 2007). After gathering evidence about a study
system using a metapopulation approach, the kind of metapopulation dynamics that the system
displays can be readily communicated to a wide audience (e.g. Dunham and Rieman 1999).
Interpreting case studies in terms of popular theory is therefore like translating the study into an

international language; it enables studies that report similar phenomena to be readily identified
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and linked, with the potential for synthesis of the circumstances in which those phenomena are

important.

Although theory has the potential to enhance progress by increasing the efficiency and extent of
knowledge transfer between researchers, there are two key barriers undermining this ideal. First,
effective communication can be confounded by poorly defined terms or conflicting definitions
(Peters 1991, Shrader-Frechette and McCoy 1993, Hall et al. 1997). For example, fragmentation
is one of the most widely applied concepts in conservation (Fazey et al. 2005) but poor definition
of terms (e.g. "habitat™) and domain (e.g. amount, condition, isolation and breaking apart of
habitat) has led to substantial confusion (Fahrig 2003, Lindenmayer and Fischer 2007).
Similarly, the indicator species approach can refer to using particular taxa as surrogates for
environmental change (Landres et al. 1988), but can also simply refer to the species that is
measured without assuming that the species provides additional insight into the state of the
ecosystem (Woodward et al. 1999, Heink and Kowarik 2010). With multiple meanings, it is
difficult to communicate particular effects and this has substantial, practical consequences.
Confused application of terms inhibits knowledge development and sharing, promotes
unproductive debate, and prevents effective mitigation of threatening processes (Lindenmayer
and Fischer 2007, Lindenmayer and Likens 2011), with the potential for major errors in resource
management (Shrader-Frechette and McCoy 1993). Although poorly defined terms are inevitable
as new fields expand (Hodges 2008), much ecological theory and the associated terms are in

need of clarification (see the many papers cited in WebTable 1 of Hodges 2008).
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A second reason that theory struggles to serve an ideal communications role is that there can be
multiple theories that describe the same phenomenon (Austin 1999b). Different streams of theory
can develop in isolated "ivory publishing towers", insulated by separate sets of key-words and
particular applications. For example, the process of net movement of organisms from one region
to another is described by at least six separate theories: mass-effects metacommunity theory
(Shmida and Ellner 1984, Shmida and Wilson 1985, Leibold et al. 2004), spill-over edge effects
(Rand et al. 2006), spatial subsidies (Polis et al. 1997), source-sink effects (Pulliam 1988),
rescue-effects (Brown and Kodric-Brown 1977) and mainland-island metapopulation theory
(Harrison 1991). Despite substantial conceptual overlap, some of these theories have limited
overlap in the literature. Since 1997, 52 papers have cited the key spatial subsidies paper by Polis
et al. (1997) and mention spatial subsidies in the abstract or key words. Of these, two papers
cited one of the key mass-effects papers (Shmida and Ellner 1984, Shmida and Wilson 1985),
two cited Leibold et al. (2004) and three mentioned metacommunities. Conversely, 33 papers
have cited the key mass-effects papers (Shmida and Ellner 1984, Shmida and Wilson 1985) since
1997 and also mention mass effects in their abstract or key words. One of these papers also cites
Polis et al. (1997). We acknowledge that each theory includes different nuances (e.g. source-sink
effects and rescue-effects imply that the sink is not a self-sustaining population while the others
do not necessarily imply that; spatial subsidies imply mass movement of any resource whereas
mass effects refers only to organisms). Nevertheless, any one theory could be readily adapted to
cover the entire suite of nuances, delivering a set of terms that can be shared more widely across

case-studies.

13
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Redundancy in theory is widespread. Other examples of redundancy can be found in the overlap
of island biogeography, metacommunity, metapopulation and nested subset theory (Driscoll
2007, 2008, Simberloff and Collins 2010), keystone theory and a suite of redundant alternative
terms (transformers, foundations, engineers, dominants, Simberloff 2004), r-K life history
strategies (Southwood 1977), unified theories in macroecology (McGill 2010), habitat
heterogeneity / disturbance theory (Huston 1979) and ecological stability concepts, where
Grimm and Wissel (1997) identified 163 definitions for 70 different stability terms, when there

are only six different stability phenomena (Grimm and Wissel 1997).

Research progress is slowed when ecologists are divided by redundant theory. In their classic
paper on succession theory, Connell and Slatyer (1977) described a succession where earlier
colonists of recently disturbed sites (good dispersers) were replaced by late-arriving stronger
competitors (poor dispersers). Connell and Slatyer (1977) suggested there was very little
evidence for this "tolerance” model of succession. However, there were many examples of this
phenomenon in the published literature by the mid-1970s, but under different names. The
concept of fugitive species is consistent with the tolerance succession model, where highly
dispersive species that are poor competitors are the first to establish in recently disturbed sites
(Elton 1927, Hutchinson 1951, Horn and Mac Arthur 1972). These early successional niches
become unavailable to fugitive species as slower-dispersing, strong competitors arrive at the site
and competitively exclude the fugitives. Southwood (1977) listed 11 synonyms of fugitive
species, in addition to his focus on r life history strategies from MacArthur and Wilson's (1967)
r-K spectrum. The new developments in succession theory (Connell and Slatyer 1977) were

inhibited by the lack of cross-referencing to pre-existing terms for the same phenomenon.

14
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Although we do not know the circumstances in which the tolerance model of succession was
developed, there are two possible reasons to explain why new, redundant theory might be
developed; (1) researchers genuinely may not recognise that a particular phenomenon is already
well studied because the phenomenon has previously been described using a different theoretical
framework and terminology; or (2) pre-exisiting terms and case studies may be ignored or
overlooked to make the newly presented idea appear novel, with rewards in terms of publication
in leading journals and high citation rates as the originators of new theory. Either way, research

progress is slowed by redundant theory.

In the next three sections, we propose responses and solutions to the weak predictive success of
theory, the planning and framing constraints, and the communication conundrums (Table 1). We
summarize these solutions in a conceptual framework to illustrate how the solutions can be

integrated with ongoing research (Fig. 1).

PREDICTION: SOLUTIONS

A primary motivation for developing and testing theory in any field is to make predictions about
new cases (Peters 1991). To date in ecology, the ability to make accurate predictions has often
proven to be an unrealistic expectation (e.g. Lindenmayer et al. 2003). Optimistically, we regard
this as a lack of progress, rather than as affirmation of the general nature of ecological theory
relative to the idiosyncrasy of ecological systems (Shrader-Frechette and McCoy 1993, Doak and

Mills 1994). There are many case studies where particular theory does apply, and so progress

15
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requires understanding the scope of application of theory, and not in discovering a theory that

has universal application across nature (Pickett et al. 1994).

The systematic review approach advocated by the Collaboration for Environmental Evidence
(Pullin and Knight 2009), or collaborative reviews such as those undertaken by the National
Center for Ecological Analysis and Synthesis in the USA (Reichmann 2004) could be readily
adapted to fulfill the role of defining the bounds within which particular theories apply, including
the temporal, geographic, environmental and taxonomic bounds. These review approaches may
be strengthened in topic areas where there is currently substantial redundancy by resolving the
communications flaws in the way theory is used. All case studies could then be flagged with
agreed key words associated with rationalized theory, eliminating the risk that relevant studies
could remain hidden by alternate sets of words associated with redundant theory. The aim of
systematic or other reviews would be to describe contingent theory, such as in edge effects
theory, where contingency may be related to the degree of habitat loss and fragmentation or the

relative availability of resources across edges (Batary and Baldi 2004, Ries et al. 2004).

Lawton (1999) argued that developing predictive theory contingent on circumstances could be
most successful in macro-ecology. Such contingent theory might be quite useful for macro-
conservation such as continental or global reserve design. However, most conservation biology is
focused on population, species and community level processes. The prospects for developing
contingent theory may be reasonable for population processes, but dismal for the more complex
interactions that are typical at a community level (Lawton 1999, Simberloff 2004). Developing

contingent theory with predictive value remains a worthy goal (Shrader-Frechette and McCoy
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1993). However, if common themes do not emerge through reviews of theory, the approach we
have outlined will still remain valuable for demonstrating the absence of predictable
contingencies, with the implication that data must be collected for each case study because best-

guess management decisions based on theory do not exist.

The extent to which best-guess management decisions exist needs to be more effectively
communicated to managers, policy makers and more broadly, to avoid the perverse outcomes
that are possible when theory is applied inappropriately. Mechanisms for achieving improved
science communication have been widely discussed. Cash et al. (2003) established a framework
for improving knowledge transfer that included maximizing the salience, credibility and
legitimacy of the messages provided by scientists. Communicating across the science-policy or
science-management divide requires a range of boundary-spanning actions, such as cross-
institution collaboration (Cash et al. 2003, van Kerkhoff 2005, Roux et al. 2006, Reyers et al.
2010), scenario-planning (Vanston et al. 1977, Peterson et al. 2003, Cumming 2007, Palomo et
al. 2011), delivering information across the boundary in a salient format (McNie 2007, Likens
2010) and actions to develop personal relationships across institutions (Gibbons et al. 2008b).
Broad public engagement (Salzman 1989, Pace et al. 2010) via a range of mechanisms
(Groffman et al. 2010, Nisbet et al. 2010) is also an important aspect of boundary-spanning,
particularly because public education contributes to shifting national norms (Reyers et al. 2010).
Scientific organisations and government agencies both can play important roles in knowledge
transfer (e.g. Calow et al. 1990, Vitousek et al. 1997, Osmond et al. 2010, Pouyat et al. 2010,
Driscoll et al. 2011), but improved boundary-spanning often requires reforms to academic and

government job performance indicators (Gibbons et al. 2008b, Cummings et al. 2010, Pace et al.
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2010, Whitmer et al. 2010). Reducing the misapplication of theory therefore requires a
sophisticated approach to boundary-spanning, in addition to the improved use and understanding

of theory among ecologists.

RESEARCH PLANNING AND FRAMING: SOLUTIONS

Given the evidence that theory can be a heuristic "strait-jacket”, a new approach is needed to
break out of the "asylum™ of specific theories. The planning and framing value of theory could be
made redundant by adopting a list of phenomena or questions that researchers should consider
when planning applied ecological research. For example, in considering the role of theory in
restoration ecology, Palmer et al. (1997) reduced the heuristic value of two ecological theories
into two salient questions. First, the "field of dreams" hypothesis predicts that providing a
suitable physical environment enables species to colonize restored land, leading to the question:
Avre there critical thresholds of physical habitat restoration? Second, the initial floristics model
of succession predicts that only species actually placed into a site at the beginning of restoration
will remain over time, suggesting the question: At what spatial scale do we need to restore

species diversity (Palmer et al. 1997)?

A broad, but simple and widely recognized checklist of concepts or questions would remove the
emphasis from popular theories with their built-in assumptions about how systems function and
direct attention to a full range of possible phenomena that should be considered in research and

management planning. There are few examples that might qualify as such a list in the literature

(e.g. Schoener 1986, Grimm and Wissel 1997, Schulte et al. 2006, Lindenmayer et al. 2008a).

Guisan and Thuiller (2005) listed factors to consider in spatial distribution modeling including
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climatic limitations, dispersal, disturbance, resource availability and species interactions.
Although different lists may be most pertinent in different contexts, it should be possible to

develop generic lists applicable across a broad field of study.

As a step towards a generic list that could provide a heuristic framework for ecological research
into species' conservation, we build on Guisan and Thuiller's (2005) list to suggest a broad set of
guiding questions (Table 2). By considering this range of questions and, importantly, the many
possible interactions, research planning in applied ecology can maintain a broad conceptual basis
that avoids the heuristic limitations of individual theories. The eight questions that we have listed
(Table 2) are not conceptually mutually exclusive. For example, population demographics
determine abundance and survival and so are implicated in most of the other questions. However,
we think this relatively short list draws attention to most of the key areas that are important for
ecological research in species conservation, with minimal repetition and therefore may be
adequately generic to provide planning support for a broad range of studies. More detailed lists
of phenomena may be needed to 'unpack’ our broad list, such as the many ways that predators
and prey may interact depending on their degree of specialization and dispersal capacity (Taylor
1990, Ryall and Fahrig 2006). Further, our list may be nested within, or work in parallel with,
checklists focused on community or ecosystem levels of organization, such as that developed by

Grimm et al. (1997) for describing stability phenomena.

After a broad list of phenomena is developed, the second step in research planning is to make the
list operational. A set of conceptual models is needed that reduce the array of possible

phenomena into a framework of plausible phenomena relevant to the case study. The third step in
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research planning would then be to develop testable questions about pertinent aspects of the
system based on a conceptual model of that system (Lindenmayer and Likens 2009). These new
case studies would be interpreted using an inductive approach (*one must confront the facts of a
particular situation, and then look for a way to make sense of them." p. 123, Shrader-Frechette
and McCoy 1993). After an initial inductive approach reveals theories that are likely to apply, a
hypothetico-deductive approach may then yield further insights into how the system works

through secondary case studies (Fig. 1).

Encouraging ecologists to adopt this approach may require recognition by journal editors and
reviewers that using a checklist for framing new research is a legitimate and often better
approach than using conceptually narrow theory. Ecologists may also be encouraged by past case
studies that have used an approach similar to the one we have described. For example,
discovering acid-rain impacts in the Hubbard Brook Experimental Forest in New Hampshire,
USA was based on research questions arising from a conceptual model of the system, not
ecological theory (Likens and Bormann 1995, Lindenmayer and Likens 2009). Checklists are
frequently presented in ecology-related papers, and sometimes are well received and highly cited
(Grimm and Wissel 1997, de Groot et al. 2002, Lindenmayer et al. 2008a). Ecologists may
therefore be amenable to taking the small additional step of using a checklist for planning and

framing research.

COMMUNICATION AMONG SCIENTISTS: SOLUTIONS
In the short term, journal editors and reviewers could help to reduce the growth of redundant

theory by demanding that authors fully justify any new terms or theory in the context of all
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preceding theories that address related phenomena. However, a new series of syntheses is needed
to help rationalize the existing surplus of overlapping and redundant theory and to define terms.
In cases where multiple theories explain the same process leading to isolated enclaves of
research, work is needed to draw together those currently separate fields by building a unifying
set of concepts and eliminating redundant terminology. Importantly, such rationalization of
theory needs to focus on ecological phenomena (e.g. disturbance) rather than a defined area of
theory (e.g. the intermediate disturbance hypothesis). Reviews need to gather together all of the
theories that describe a particular process or pattern and then build a synthesis of the collected
overlapping, complementary and redundant theories. The aim of these syntheses would be to
define the minimum theory set that describes particular phenomena and to position the
rationalized theory within the broader framework of other syntheses, demonstrating any links
and nested relationships. This approach is similar to the method of 'integration’ across ecological
fields advocated by Pickett et al. (1994), but places emphasis on consolidating existing
understanding into more efficient frameworks. This approach also has analogues in the data-
mining literature, where discoveries can be more efficient if a set of non-redundant search rules
are used (Lo et al. 2009), and in nursing where theoretical concept analysis (Risjord 2009) is
used for clarifying the definitions and use of terms in support of theory development. The
benefits of rationalization of ecological theory are that theory would be more accessible, it would
provide a coherent basis for choosing particular theory, and would break down the conceptual

and communications barriers between fields that address the same phenomena.

Components in the rationalization of theory might include (1) a scope defined by a phenomenon

or interactions among them; (2) a collation of theories and terms used to describe the
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phenomenon, and; (3) synthesis. The synthesis would remove redundancy, formulate competing
explanations into a single framework, link that framework to pre-existing rationalizations of
theory and provide definitions. As a simplified example, (1) the scope could be defined as a
pattern of complete occupancy of all of the available niche or 'preferred’ habitat. (2) Some
relevant theories describing this pattern include niche theory, the metacommunity species-sorting
concept, and the storage effect (Warner and Chesson 1985). (3) A synthesis would identify and
remove redundancy in niche theory and the metacommunity species-sorting concept (both imply
a high level of dispersal and good establishment). The synthesis would also build a framework
that links to broader rationalizations of theory (if they existed) and would recognize that the
storage effect and niche theories are competing mechanisms. This third component therefore
guides the synthesis to distinguish between theories that use different words to describe the same
phenomenon (and are therefore redundant, e.g. mass effects versus spill-over edge effects) and
theories that present different mechanisms to describe the same process or pattern (and are

therefore competing, but not redundant).

This approach to rationalization of theory probably will not, by itself, resolve the expansion of
redundant theories and associated terms. If novelty remains a pre-eminent criterion for
publishing success, then authors will be motivated to label established phenomena with new
theory based on hair-splitting or inadequate knowledge of previous work (Belovsky et al. 2004).
Further, Hodges (2008) argued that the main reason past attempts to rationalize the use of
ecological terms have failed is that subsequently, ecologists have not accessed the most up to

date definitions. This problem could be minimized if syntheses were managed using agreed
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protocols and were made widely available through a centralized reputable organization (Fazey et

al. 2004).

A centralized organization for theory synthesis could be modeled on a number of existing
collaborations. For example, in the medical field, the Cochrane Collaboration provides a central,
widely used and respected repository for systematic reviews of medical interventions (Bero and
Rennie 1995). More recently, the Collaboration for Environmental Evidence has established this
model for conservation and management interventions (Pullin and Knight 2009), and is rapidly
growing in scope and impact (CEE 2010). In forestry, an authoritative dictionary of 4500 words
is maintained through international collaboration by the Society of American Foresters (Helms
1998). Each of these collaborations involves leading researchers in the field, ensuring quality and
legitimacy, and provides a central web-based location where reviews or definitions can be

readily retrieved.

The International Nucleotide Sequence Database Collaboration (http://www.insdc.org/) presents

another model of international scientific cooperation that a new collaboration for ecological
theory might learn from. The INSDC involves cooperation of three organizations that catalogue
and make available genetic sequence data submitted by researchers from around the globe
(Cochrane et al. 2011). Important elements that could be adapted in an ecological theory
collaboration are the free sharing of information, voluntary international cooperation, the use of
multiple hubs to ensure wide participation and data security, knowledge collation based on peer-
reviewed publications, and a strong link between acceptance by journals and author participation

in the collaboration (through the INSDC accession number system, Cochrane et al. 2011).
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An authoritative and accessible structure inspired by existing models such as CEE, and INSDC,
would expedite the rationalization of ecological theory. Major national and international
ecological organizations may have the capacity and authority to develop a collaboration that
would be widely respected by ecologists (e.g. Ecological Society of America, International
Association for Ecology, the Society for Conservation Biology, other major national ecological
societies). Such a collaboration would enable existing theory to be elaborated, refined, or
overthrown when necessary, and ensure that only truly new ideas made it into the revised
rationalization. It could provide a forum for debating and updating definitions of ecological
terms. Importantly, with a single repository for theory, all ecologists would know where to
access the most up-to-date ecological theory and definitions, and would have a framework for
selecting an appropriate theory that describes their case study. A central repository for theory and
definitions would also be a valuable new source of credible and salient information (Prendergast
et al. 1999, Cash et al. 2003, Janse 2008) for application in spanning the boundaries between

science and management.

PERSPECTIVES FROM LONG TERM RESEARCH

The following section comprises two case studies that illustrate many of the problems and some
of the solutions in prediction, planning and communication that we have discussed. The case
studies are unusual in that a wide range of ecological theories have been tested using extensive
and often long-term empirical data (summarized in Lindenmayer 20093, b). These long-term
studies provide a rare opportunity to examine how theory has been used in making predictions, in

developing research, and in communicating theory.
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Case study #1 — The Tumut Fragmentation Study

The Tumut Fragmentation Study in southern New South Wales, south-eastern Australia,
commenced in 1994 and continues today. The study has focused on the occurrence and dynamics
of mammals, birds, reptiles and other taxonomic groups within a landscape dominated by
plantations of exotic Pinus radiata (Lindenmayer 2009a). The study at Tumut includes 86
remnant patches of Eucalyptus forest stratified by patch size, shape, forest type, and time since
fragmentation. In addition, the study includes 40 “control” sites located within large areas of
unfragmented eucalypt forest and 40 sites in the plantation “matrix” surrounding the patches of

remnant eucalypt forest (Lindenmayer 2009a).

Prediction — There are several examples of species from the Tumut study that support
metapopulation predictions such as by showing expected relationships with patch size and
isolation, including fitting incidence-function models (Lindenmayer et al. 1999c, Lindenmayer et
al. 2001). However, many species were not primarily influenced by landscape features of a
patch-matrix model. The occurrence of some bird and marsupial species was poorly predicted by
metapopulation models because they occurred throughout the matrix or were very widely
dispersing (Lindenmayer et al. 1999c, Lindenmayer et al. 2001). Patch size and isolation was
unimportant for frog species, which were instead strongly influenced by the location of wide,
shallow swamps (Parris and Lindenmayer 2004). Further, Fischer et al (2005) showed that a
habitat continuum model including food, shelter, space and climate axes described the abundance

and distribution of reptiles in the Tumut study better than the patch-matrix model.
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A range of theory in addition to metapopulation theory has been tested using the Tumut study
system (Table 3). In general, ecological theory has been poorly supported, and when theory was
consistent with field evidence, it was usually for only a subset of species and circumstances. One
exception was the peninsula effect (Simpson 1964), which involved a simple test of changes in
species richness of one taxon (birds). Our experience in challenging ecological theory with field
data from Tumut strongly reinforces our argument that ecological theory often has limited

predictive value.

With limited predictive ability, application of popular theories to management in the Tumut
study led to poor management decisions initially, but with sustained boundary-work (sensu
Guston 1999), better outcomes have been achieved. At the outset of the project, managers came
into the planning room with the idea that there is a minimum patch size warranting protection.
This pre-conception arose from an understanding of island biogeography and nested subset
theory, both of which predict that small patches will have fewer species and, under nested subset
theory, species in small patches are a subset of those in larger patches (Cole 1983). This meant
that small patches could be cleared to reduce impediments to pine plantation establishment with
no impact on conservation values (this argument had also been made in North America based on
island biogeography theory, see Simberloff 1988). Subsequent research demonstrated that
nesting of the biota was weak in the Tumut study system, and small remnants had conservation
value that larger remnants did not (Fischer and Lindenmayer 2005). This new message about the
importance of small patches was communicated to managers on field days, and to corporate
planners during meetings in city office towers. As a consequence, the minimum size of patches

that must be retained during plantation establishment was reduced from 10 hato 1 ha. Thisis a



576

Y4

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

Driscoll and Lindenmayer 27

critical change because plantation expansion in the Tumut region targets former grazing land that

supports many small patches of threatened woodland communities (Lindenmayer et al. 2008c).

Research Planning and Framing — The work at Tumut commenced as an investigation of
landscape context and habitat fragmentation, a choice that was strongly influenced by
metapopulation theory (Lindenmayer et al. 1999b). This initial focus and extensive research
effort based on a patch-matrix model (e.g. Lindenmayer et al. 1999c, Lindenmayer et al. 2001)
may have slowed progress towards improved plantation management. Fragmentation concepts
make the assumption that the matrix is inhospitable, without beneficial effects for patch-based
species. However, the strong influence of the matrix on population survival in patches was
revealed in a matrix harvesting experiment (Lindenmayer et al. 2009). Birds and one marsupial
declined in patches when the entire surrounding pine matrix was harvested, but not if only half of
the surrounding matrix was cleared. Through negotiation with land managers, these findings
have recently led to the spatial re-scheduling of harvesting around patches. We speculate that
these insights may have been gained more quickly (and embraced more quickly and earlier by
plantation managers) if a checklist of research planning questions had been followed. A checklist
would have encouraged an early focus on the possible role of the pines as habitat, rather than the
focus on patch-matrix-based theory. Nevertheless, we acknowledge that the delay in progress
was short, because results that contradicted patch-matrix assumptions quickly accumulated. The
"metapopulation approach” to research in fragmented landscapes (Hanski and Gaggiotti 2004,
Driscoll 2007) is probably the most sophisticated approach to landscape scale research that is

based on ecological theory. In some situations, the metapopulation approach may be as good (or
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almost as good, in the case of Tumut) as a checklist approach because the approach emphasises a

broad range of questions.

Communication Among Scientists — There is some evidence supporting limited communication
among theoretical fields arising from the Tumut research. A major publication examining bird
distributions at Tumut was framed in the context of "fragmentation™ (Lindenmayer et al. 2002b).
However, this study had important implications for metacommunity theory, where mass effects
strongly influenced the bird community in pines adjacent to eucalypt remnants and where
species-sorting and potentially patch-dynamic processes drove some species to be most abundant
in the smallest patches, or in intermediate-sized patches. Further, there was no evidence of any
spatial dependence, originally interpreted as evidence against a mainland-island metapopulation,
but also important evidence that neutral metacommunity processes are not predominant. Despite
these important implications for metacommunity theory, only four of 97 papers that cited
Lindenmayer et al (2002) have a metacommunity focus (and three of these were written by us).
In contrast, aligned with the fragmentation framing of the paper, 71 of the citing papers include
fragmentation as a searchable term. As a second contrast, a paper with metacommunity in the
title and published in the same year (Mouquet and Loreau 2002) was cited 143 times, with 67 of
the citing papers including "metacommunity” in the abstract, keywords or title. We speculate that
if Lindenmayer et al. (2002) had placed emphasis on metacommunity theory in the abstract and
discussion, that these important insights into metacommunity processes would have been more

regularly cited in the growing metacommunity literature.
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Case Study #2 — Wet Forest in the Victorian Central Highlands

Our second case study focuses on the wet forests of Victoria, south-eastern Australia, where
research commenced in the early 1980s (reviewed by Lindenmayer 2009a). The core of the study
consists of 161 sites that have been surveyed on a repeated basis over the past 27 years for
arboreal marsupials and vegetation structure (Lindenmayer et al. in press) and ten years for forest
birds (Lindenmayer 2009b). Most sites are dominated by Mountain Ash Eucalyptus regnans or
Alpine Ash E. delegatensis, with a wet sclerophyll forest or cool temperate rainforest understory
(Ashton 2000). An array of projects has been completed and others are ongoing. These include
studies of old growth forest (Lindenmayer et al. 2000), the rate of collapse of large trees with
hollows (Lindenmayer et al. 1997, Gibbons et al. 2008a), the use of large trees with hollows by
arboreal marsupials (Lindenmayer et al. 1990b, Banks et al. 2011c), post-fire ecological recovery
(Banks et al. 20114, Banks et al. 2011b) and the influence of variable retention harvesting on

small mammal populations (Lindenmayer et al. 2010).

Prediction — The development and use of theory in the wet forest research provides a case in
point similar to that proposed in Figure 1. In Figure 1 we suggest that initial research should be
developed in an atheoretical context using a checklist, and then theories relevant to the initial
data sets can be identified and further tested (steps 4-5 in Fig. 1). Much of the wet forest research
has made little or no use of theory. Instead, the research is framed around specific problems
about habitat use and resource provision. However, emerging from this approach are two areas of
theory that have successfully aided interpretation, reframing and further testing of predictions.
First, the influence of phenomena at a hierarchy of spatial scales was evident from over a decade

of research into Leadbeater's possum Gymnobelideus leadbeateri, a threatened species
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(Lindenmayer 2000). This 'hierarchy theory' (Allen and Starr 1988) was effectively applied to
model the possum's spatial distribution (Mackey and Lindenmayer 2001) and forms an important
component of subsequent checklists for guiding forestry research (Lindenmayer et al. 2006).
Second, the reliance of arboreal marsupials on tree hollows (Lindenmayer et al. 1990b) in an
ecosystem strongly affected by fire and post-disturbance logging revealed that large trees
remaining after disturbance provide critical resources for Leadbeater's possum. These
observations contributed to the emergence of 'biological legacy theory', which predicts that the
outcome of disturbance is mediated by the resources that linger afterwards (Franklin et al. 2000,
Franklin et al. 2002, Lindenmayer and Ough 2006). In the Victorian wet forest, like at Tumut,
reasonable predictions could not be made using "off the shelf" theory (Table 4). However, theory
that arose from detailed empirical work in the wet forest study system could be applied to make

predictions about that system and to reframe ongoing research.

Predictions from theory have not generally featured in the management of the wet forest study
system. Nevertheless, a number of important lessons about effectively engaging with managers
have been learned. Particularly, one form of science communication has not worked — providing
reprints of scientific articles to resource managers and conservation practitioners. These are not
read by either group. Our experience is consistent with other research in which resource
managers based their management decisions on experience and not on written scientific outputs
(Sutherland et al. 2004, Fazey et al. 2006), a situation that has a broad range of underlying causes
(Jasanoff 1987, Cash et al. 2003). In contrast, perhaps the most effective science-
communications strategy has been to use grant funding to permanently base a research officer in

the field. The person serves a boundary-spanning function by working full-time on the research
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program but staying connected on a daily basis with resource managers from government
agencies (boundary-work, Guston 1999). With high turnover of staff in agencies, this capacity
for regular communication has proven invaluable for briefing new staff about ongoing research.
Effective communication is also facilitated by regular field workshops, enabling a two-way
dialogue with agency personnel. Some workshops have become major international meetings and
provided a setting in which new forest management initiatives have emerged (Lindenmayer et al.
2004). In addition to organizational boundary-spanning, public outreach has been a feature of
both the wet forest and Tumut research programs (e.g. Lindenmayer and Possingham 1995b,
Lindenmayer et al. 2008b). We have found that books, plus posters and brochures, are more
salient boundary-spanning objects for research users and managers than peer-reviewed scientific

articles (Cash et al. 2003, McNie 2007).

Research Planning and Framing — The wet forest research commenced as an applied
investigation into the habitat requirements of Leadbeater's possum (Lindenmayer et al. 1990a).
Early results showed that high quality possum habitat could be generated by retaining an
adequate number of old trees in logging coupes (Lindenmayer et al. 1991). However, a strong
focus on metapopulation modelling during the early and mid 1990s distracted from these initial
coupe-level conservation recommendations. Metapopulation simulations emphasised the pre-
eminence of whole patches for the survival of Leadbeater's possum (Lindenmayer and
Possingham 1995a), resulting in conservation planning that focused on reservation. However,
later evidence revealed that disturbed forest was more important for possum survival than
previously assumed (Lindenmayer and McCarthy 2006). Building on the initial site-level phase

and the subsequent metapopulation phase, a new imperative surfaced that emphasised features at
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three spatial scales: habitat features at the coupe-level, riverine buffers and corridors at the forest
block level, and reserves at the regional level (Lindenmayer and Franklin 1997). This recognition
meant that the initial emphasis on coupe-level management had to be revisited. New discussions
between researchers and managers led to establishment of a variable-retention harvesting
research project aimed at better integration of conservation with production at a fine spatial scale

(Lindenmayer et al. 2004).

Rather than having to go through this learning process with the associated delay in introducing
the variable-retention harvesting idea to Victorian forest managers, we believe in hindsight that
faster progress might have been expected if a checklist of research questions had been used from
the outset. With a checklist (e.g. Lindenmayer et al. 2006), all scales would have been examined
earlier on, ensuring that the emphasis on coupe-level structure was maintained throughout the
research program. It could be argued that a useful checklist of questions may not have emerged
first without a detailed series of tests of different areas of ecological theory. Regardless of the
truth of such an argument, there is no need for future research to suffer the same delays and
opportunity costs associated with sequential testing of sometimes overlapping, sometimes

disconnected ecological theory.

Communication Among Scientists — There is evidence from the wet forest study that linking
observations to appropriate theory enhances communication of the observed phenomenon.
Lindenmayer and Possingham (1996) present an early and clear description of the biological
legacy concept without using the term "legacy”. The term "biological legacies” first appears in

the same context in which we use it (Franklin et al. 2002) in Lee et al. (1997) . Lindenmayer and
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Possingham's (1996) metapopulation model identified the importance of dead trees for reducing
extinction risk of Leadbeater's possum after fire. However, that study has not been cited by
papers that also used "biological legacies” as a searchable term. This contrasts with other papers
that draw on the wet forest case study and specifically mention biological legacies (Franklin et
al. 2002, Lindenmayer and McCarthy 2002, Lindenmayer and Noss 2006, Lindenmayer and
Ough 2006), for which 9-14% of citing papers also mention biological legacies. If one wished to
review phenomena associated with the biological legacy concept, the latter papers would be

readily discovered, but the earlier modelling work may not be.

Case Studies — summing up
The Tumut and Victorian wet forest case studies provide support for our key concerns about the
application of theory in conservation, namely: theory has little predictive value when applied in

new situations, theory can constrain research progress when used to plan research, and theory

can limit communication when multiple sets of terms are used to describe the same phenomenon.

However, the case studies also provide important insight into how theory can be used effectively
in the research cycle, particularly for prediction after an initial phase of research has identified
relevant theory, and for communicating important concepts with ecologists and with managers,

reducing the risk that theory will be applied perversely.

CONCLUSIONS
To make faster progress in applied ecology, three important steps are to: (1) better define the
predictive capacity of theory, and therefore better identify appropriate applications by:

publishing reviews that define contingent theory, refine rationalized theory and provide support
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for decision-making; (2) guiding research planning and framing by: encouraging applied
ecologists to use a broad checklist approach when planning new research and to use rationalized
theory more widely in new and secondary case studies, and; (3) enhance communication among
scientists by: developing and updating rationalized theory from which redundant theory has been

purged, and for which a set of key-word definitions are developed.

Implementing these steps effectively will likely require careful management through
international collaboration. A collaboration for ecological theory could draw on many of the
principles and mechanisms of existing international science partnerships, including those of the
Centre for Environmental Evidence and the International Nucleotide Sequence Database
Collaboration. A co-operative institution built around a number of existing respected scientific
organizations could make rationalized theory, definitions and checklists for research planning
widely available, which is an essential component of limiting redundancy, improving

communication, and providing a tool to support boundary-spanning actions.

By implementing these three steps, research progress will be accelerated through increased
capacity to discover contingent theory, through routine use of a broad conceptual scope in
research planning and framing, and by access to improved tools for communication among
ecologists. With these improvements in prediction, research framing and communication,
ecologists will have better tools for application in spanning the boundaries between ecologists,

managers and policy makers.
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Many of the approaches that we have advocated are likely to be beneficial in fields outside of
applied ecology. Redundant theory and terminology is likely problematic across all disciplines
(e.g. occupational health: Grongvist et al. 2001, social sciences: Bentrupperbaumer 2006,
medicine: Makoul and Clayman 2006, nursing: Mantzoukas and Watkinson 2007, engineering:
White 2007, psychology: Cherniss 2010, geology: Ramsey 2010). Most fields are therefore
likely to benefit from establishing both collaborative centralized coordination and dissemination

of rationalized theory and terminology.

Removing the impediments to research progress that are embedded in the way applied ecologists
currently use theory is now very important because these limitations abet inappropriate
application of theory in conservation. We think that the framework we have presented would
help to avoid management mistakes and increase the capacity of ecologists to rise to the

challenges of biodiversity conservation in the face of global change.
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Table 1. Three important ways that theory should contribute to conservation biology, the reasons

it often fails to make that contribution, and the changes that would help to resolve those

problems.

How theory should help

Why theory often fails

Solutions

Predict outcomes of new

situations

Heuristic value: provide
understanding for planning
research and posing

research questions

Communicate findings
across taxa, regions and
biomes using a common set

of terms and concepts

There are no universal laws and there

IS a poor understanding of

contingencies

Theory is applied regardless of these
failings, with a risk of perverse

outcomes

Theory has narrow conceptual scope,

constraining thought and planning

Redundant theory isolates researchers

and undermines a logical choice of

framework

Poorly defined terms confuse

discussion

Systematic review to clarify
application of theory and develop

contingent theory

Improved science-practitioner
boundary spanning, combined

with other listed solutions

Avoid use of theory for guiding
initial or broad research programs
by using a list of phenomena or

questions instead (Table 2)

Rationalization of theory through
synthetic review of the theory

describing a set of phenomena

Develop authoritative dictionary

of key words
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Table 2. The heuristic value of many theories used in conservation could be replaced by three
classes of questions; regional and landscape phenomena, abiotic drivers and biotic processes.
These provide a broad conceptual basis for research development in species management and
conservation, ensuring that a broader range of phenomena are considered than when research is
developed within the domain of a particular theory. From this checklist of questions about
phenomena, researchers can develop a conceptual model of their system and use that conceptual

model to formulate focused and relevant research questions (Lindenmayer and Likens 2009).

Phenomena at Regional and Landscape Scales

Regional fluxes. What regional processes influence the species within the focal landscape?
(Region defined as the area surrounding a focal landscape and landscape defined from a
management or species perspective. e.g. influx of resources and species from outside the
focal landscape.)

Landscape elements. Which parts of a landscape are used by the species and for what purpose?
Are there gradients or patch-matrix patterns of occupancy and are landscape elements used
as sources, sinks, or for dispersal or foraging? These questions aim to define aspects of a

species' habitat and describe its location in the landscape.

Abiotic Drivers

Environment. Do species respond to environmental gradients or variation across the landscape?
(e.g. temperature, rainfall, nutrients)

Disturbance. How do disturbance regimes influence species abundance and survival? (type of
disturbance, frequency, extent, severity, duration (Shea et al. 2004), e.g. climate change,

drought, flood, fire, wind, anthropogenic impacts)
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Time. What is the appropriate temporal scale for examining ecological responses?
(Considerations include the rates and relative impact on population survival of all other

processes)

Biotic Processes

Interactions. To what extent do interactions with other species influence abundance or survival?
(prey, predators, competitors, pollinators, seed dispersers, pathogens, hosts, vegetation
structure)

Dispersal. How does dispersal influence abundance and survival of populations? (immigration,
emigration, colonization)

Demographics. What are the characteristics and main drivers of population demographics?
(characteristics: population growth, recruitment, survival, population extinction; main

drivers: interactions with abiotic and other biotic processes, genetic effects, life history)

62
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Table 3. Ecological theory that has been tested using the Tumut study system

63

Theory

Test methods

General findings

Reference

Metapopulation

Ecological

Thresholds

Nested Subset

Tested fit of PVA and
incidence function

models

Incidence under
different proportions of

vegetation cover

Nestedness in birds,

reptiles and possums

Occurrence of some birds and
mammals well predicted, others
poorly predicted. No general
patterns in which kinds of species
conform to theoretical
assumptions.

No species exhibited the
predicted threshold response
because the assumption that
vegetation = habitat was not
correct.

Possums and reptiles were not
nested, and birds were
imperfectly nested due to
occurrence in the matrix, and
effects of temperature gradients

for reptiles.

(Lindenmayer

et al. 2003)

(Lindenmayer

et al. 2005)

(Fischer and
Lindenmayer

2005)
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Metacommunity Rare species and

Peninsula effect
(derived from
island
biogeography)
Ecological

resilience

Assembly Rules

community changes
across an isolation

gradient

Measure abundance
along narrow eucalypt

remnants

Compared resilience
statistics in landscapes
with different land-use

intensification

Tested for positive and
negative relationships
among bird species
after taking into
account vegetation

differences

Competing metacommunity
concepts act ephemerally,
sometimes simultaneously, and
effects vary with species and
region.

Only tested with birds, and found
decreasing species richness with
distance along peninsulas as
predicted by theory

Predictions that Tumut fragments
should show lower resilience
measures for bird communities
than Tumut controls were not
observed.

Almost no evidence of negative
interactions at Tumut, and effects
ephemeral. Assembly rules had

no predictive value.

(Driscoll and
Lindenmayer

2009)

(Tubelis et al.

2007)

(Fischer et al.

2007)

(Driscoll and
Lindenmayer

2010)
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Table 4. Ecological theory that has been tested using the Victorian wet forest study system

Theory Test methods

General findings

Reference

Surrogates and  Indices of proximity to

Indicators settlement, intensity of land
use, other arboreal marsupials
as biodiversity surrogates

Ecological Compared resilience statistics

resilience in landscapes with different

land-use intensification

Assembly Rules Tested for positive and
negative relationships among
bird species after taking into
account vegetation
differences

Metapopulation  Applied in a series of studies,

not explicitly tested.

No relationship between

surrogate and occurrence

of possum species

Incorrectly predicted
higher resilience than a
randomly assembled
community in the wet
forest system

No negative interactions
between bird species
were observed in wet
forests. Assembly rules
had no predictive value.

New empirical research

showed that patch-matrix

assumptions applied to
one possum species, but
not three others, or most

bird species.

(Lindenmayer and
Cunningham 1997,
Lindenmayer et al.
2002a)

(Fischer et al. 2007)

(Driscoll and

Lindenmayer 2010)

(Lindenmayer and Lacy
1995, Lindenmayer and
Possingham 1995a,
Lindenmayer et al.
1999a, McCarthy and
Lindenmayer 1999,

Lindenmayer 2009b)
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1326 Figure 1. Conceptual model of how solutions to the three key areas in which theory often fails
1327 can be incorporated into research. An international coordinating institution (grey oval)
1328 provides an authoritative central repository and access point for three classes of

1329 information: (1) a list of questions describing phenomena that are important to consider in
1330 developing and framing research (e.g. our Table 2), (2) peer-reviewed rationalized theory
1331 and definitions of key words that facilitate better communication among scientists, and (3)
1332 systematic reviews that develop contingent theory with the potential for prediction. New
1333 case studies (4) use a conceptual framework based on the list of questions (2) for framing
1334 and planning to avoid using particular theories with narrow heuristic scope. New case
1335 studies are interpreted and relevant theories identified using an inductive approach, then
1336 theories are further tested in secondary case studies (5) using a hypothetico-deductive
1337 approach. New case studies, secondary case studies and systematic reviews of theory may
1338 provide new insight that refines theory or requires development of new theory (6).

1339 Rationalized theory may thereby be updated, possibly through a peer-review process
1340 within the coordinating institution, ensuring that the most comprehensive theoretical

1341 frameworks are readily accessible. The systematic rationalization of theory (7) plays the
1342 dual role of setting up the frameworks for using theory throughout the research cycle, and
1343 of enabling periodic review of the theory describing particular phenomena in addition to
1344 the gradual refinement that might arise through (6). If new research does not refer to

1345 rationalized theory, or in fields where rationalized theory has not been published, the
1346 ongoing parallel development of theory is likely (dashed lines, 8), providing new

1347 motivation and source material for additional syntheses to rationalize theory (7).
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