

1

2 This is a pre-print version of the paper. The final version is available from the Ecological Society
3 of America. <http://www.esajournals.org/loi/emon>

4 doi: 10.1890/11-0916.1

5

6

7 Running Head: Theory in ecology and conservation

8 Framework to improve the application of theory in ecology and conservation

9

10 Don A. Driscoll

11 David B. Lindenmayer

12

13 Fenner School of Environment and Society

14 The Australian National University

15 Canberra ACT 0200

16

17

18

19

20

21

22 email:

23 don.driscoll@anu.edu.au

24 david.lindenmayer@anu.edu.au

25

26 *Abstract.* Ecological theory often fails applied ecologists in three ways: (1) theory has little
27 predictive value but is nevertheless applied in conservation with a risk of perverse outcomes; (2)
28 individual theories have limited heuristic value for planning and framing research because they
29 are narrowly focused and; (3) theory can lead to poor communication among scientists and
30 hinder scientific progress through inconsistent use of terms and widespread redundancy. New
31 approaches are therefore needed that improve the distillation, communication and application of
32 ecological theory. We advocate three approaches to resolve these problems: (1) improve
33 prediction by reviewing theory across case-studies to develop contingent theory where possible;
34 (2) plan new research using a checklist of phenomena to avoid the narrow heuristic value of
35 individual theories; (3) improve communication among scientists by rationalizing theory
36 associated with particular phenomena to purge redundancy and by developing definitions for key
37 terms. We explore the extent to which these problems and solutions have featured in two case
38 studies of long-term ecological research programs in forests and plantations of south eastern
39 Australia. We find that our main contentions are supported regarding the prediction, planning
40 and communication limitations of ecological theory. We illustrate how inappropriate application
41 of theory can be overcome or avoided by investment in boundary-spanning actions. The case
42 studies also demonstrate how some of our proposed solutions could work, particularly the use of
43 theory in secondary case studies after developing primary case studies without theory. When
44 properly coordinated and implemented through a widely agreed upon and broadly respected
45 international collaboration, the framework that we present will help to speed the progress of
46 ecological research and lead to better conservation decisions.

47 *Key words: disturbance theory; heuristics; island biogeography; metacommunity;*
48 *metapopulation; research planning; science communication; Tumut Fragmentation Study;*
49 *unified theory; Victorian Mountain Ash forest*

50

51

52 **INTRODUCTION**

53 The field of conservation biology presents a contradiction in the way it uses ecological theory.
54 On one hand, theory is deeply embedded within the field, and is applied directly or indirectly in
55 conservation decision-making (Doak and Mills 1994, Simberloff 1998). On the other hand, most
56 papers published in conservation journals make little or no use of theory (With 1997, Fazey et al.
57 2005). Ecological theory is being used for making resource-management decisions, but applied
58 ecologists most often report research as though theory does not exist.

59

60 We believe this is a problem. If few applied ecologists work to develop theory, then the theory
61 used for supporting decision-making will improve at a slow pace, if at all. However,
62 improvement is needed because application of contemporary ecological theory can lead to
63 detrimental management outcomes (Shrader-Frechette and McCoy 1993, Doak and Mills 1994,
64 Harrison 1994). Further, accelerated progress is demanded as the conservation challenges facing
65 land managers continue to increase. Decisions must be made in the context of the global
66 biodiversity crisis (Koh et al. 2004, Stork 2010), made worse by climate change and increasing
67 demand for resources (Ayres 2000, Butchart et al. 2010). For ecologists to provide information
68 and guidance at the pace demanded, we first need to have theory that can make reasonable
69 predictions about the consequences of management interventions. We also need to be able to
70 plan and frame research that addresses the most important conservation and ecological questions,
71 and we need to communicate our research results to one another effectively.

72

73 Ecological theory has the potential to support these needs for prediction, research planning, and
74 communication among scientists. But how well does theory perform in each of these roles and

75 where does it fail? We present three challenging answers. We contend that, currently, theory
76 often fails in prediction because the spatial, temporal and taxonomic circumstances in which a
77 theory applies are often not defined and this failure of prediction can lead to perverse
78 management outcomes. We show that theory can often have limited research-planning value
79 because individual theories span a narrow range of concepts. Finally, we argue the proliferation
80 of theory limits communication among scientists and hinders scientific progress because terms
81 are poorly defined, and because much theory is redundant. To address these weaknesses, we
82 present specific suggestions that build on the concept of integration of ecological theory (Pickett
83 et al. 1994) and is aimed at improving the way theory is used in applied ecology (Table 1, Fig.
84 1). We then challenge our arguments about the limitations of theory using two long-term
85 research programs. These case studies provide direct evidence that the way theory is currently
86 used can limit research progress, but they also illustrate some of the possible solutions. We argue
87 that, ultimately, the framework we present will improve the use of ecological theory in
88 conservation, supporting more rapid accumulation of knowledge. Combined with improved
89 cross-boundary communication, ecologists will be better able to promote informed conservation
90 management.

91

92 **THEORY - DEFINITION**

93 Different terminology and emphases are used by different authors to define theory (c.f. Pickett et
94 al. 1994, Ford 2000). A discussion of definitions of theory is not one of our goals, but we agree
95 with Pickett et al (2004) that theory is a system of conceptual constructs. Pickett et al. (1994) and
96 Ford (2000) emphasised that such systems consist of several components including axioms or
97 assumptions, hypotheses (testable statements), and concepts (labeled phenomena). The simplest

98 form of a theory therefore consists of a testable hypothesis, and the associated assumptions and
99 concepts, although such a theory may be nested within a larger body of theory.

100

101 **PREDICTION**

102 When supported by empirical evidence, theory can predict ecological change and support
103 management decisions. For example, incidence function models based on metapopulation theory
104 can predict patterns of landscape occupancy and change for well-studied species (Hanski et al.
105 1996). The British butterfly *Hesperia comma* exhibits population structure and dynamics that
106 satisfy the main assumptions of metapopulation theory (Thomas et al. 1986, Hill et al. 1996). On
107 this basis, Wilson et al. (2009) were able to apply a metapopulation model, with parameters
108 estimated using data from a landscape of over 100 sites. In three of four test landscapes, the
109 predicted changes in distribution over 18 years were well matched with the observations.

110 Similarly, a patch-occupancy model for the Florida scrub lizard (*Sceloporus woodi*) developed in
111 one landscape was able to accurately predict patch occupancy in two test landscapes (Hokit et al.
112 1999). When a predictive capacity has been proven for a species, metapopulation models can be
113 used to rank management alternatives for improving landscape connectivity and reducing the risk
114 of metapopulation extinction (Drechsler et al. 2003, Nicholson and Possingham 2007, Wilson et
115 al. 2010).

116

117 In contrast with empirically verified, **local** application of theory, substantial evidence spanning
118 two decades demonstrates that ecological theory has very limited **general** predictive capacity
119 (Peters 1991, Shrader-Frechette and McCoy 1993, Caughley 1994, Doak and Mills 1994,
120 Schemske et al. 1994, Lawton 1999). Earlier critics (Shrader-Frechette and McCoy 1993, Doak

121 and Mills 1994) focused on metapopulation and island biogeography theories, demonstrating that
122 the idiosyncrasies of particular ecological systems made prediction unreliable. Other popular
123 ecological theories suffer from similar weaknesses. For example, although there is some
124 evidence supporting the intermediate disturbance hypothesis, most cases do not support
125 predictions of higher diversity at medium disturbance levels (Mackey and Currie 2001).
126 Similarly, edge effects that include elevated nest predation or parasitism have been observed in
127 north-western Europe and parts of North America, but predictions often do not hold in Central
128 Europe, Central America, Australia and many tropical landscapes (Lahti 2001, Batary and Baldi
129 2004, Ries et al. 2004, Hausmann et al. 2005, Lindenmayer and Fischer 2006). We have recently
130 examined the application of assembly rules, metacommunity and metapopulation theory and
131 found that these common theories had no, or very little predictive value in a series of case studies
132 (Driscoll 2008, Driscoll and Lindenmayer 2009, Driscoll et al. 2010, Driscoll and Lindenmayer
133 2010). As a final example, general predictions about conservation management have emerged
134 from demographic theory (Sinclair 1996) but species-level idiosyncrasies and temporal variation
135 have made predictions weak. Attempts to link mammal population growth with age of first
136 female reproduction (Hone et al. 2010) indicated extremely wide confidence limits due to
137 species-specific responses. Additional uncertainty arose from temporal variation in age of first
138 reproduction (Hone et al. 2010). Hone et al. (2010) warn that a case-by-case evaluation of
139 precision is needed. Our point here is that if theory is applied to new situations for which there is
140 no relevant empirical data, the literature suggests that more often than not, theory will fail to
141 describe that new system.
142

143 Despite ecological theory lacking general predictive capacity, theory is frequently applied in
144 conservation and land management with the implicit assumption that predictions from theory
145 provide a reasonable guide for management. For example, assumptions about connectivity,
146 metapopulation dynamics, and patch-matrix landscapes are common in tools for landscape
147 planning (Hersperger 2006, Termorshuizen et al. 2007) and reserve design (Nicholson et al.
148 2006, Edwards et al. 2010). Ecological theory underlies many scenario-planning approaches in
149 ecology (Cumming 2007), and these are widely applied in environmental planning (Palomo et al.
150 2011). Theory has also been applied directly to support, for example, biodiversity management
151 strategies based on keystone, indicator or ecosystem-process theories (Simberloff 1998),
152 networks of small reserves based on metapopulation theory (as discussed by Harrison 1994), and
153 corridor construction arising from fragmentation theory (Russell 1994).

154
155 With weak predictive capacity, the application of theory in conservation can lead to management
156 mistakes. For example, in north-western USA, forest logging options were identified on the basis
157 of population viability analysis (PVA) of the Northern spotted owl *Strix occidentalis caurina*
158 (Harrison 1994). Subsequent scrutiny of the models in court revealed the metapopulation
159 assumptions of the PVA were poorly supported. Management based on theory was deemed to be
160 a substantial threat to the Northern spotted owl (Harrison 1994). Other examples of the potential
161 for management mistakes include; metapopulation theory applied to captive populations of
162 Puerto Rican Parrots *Amazona vittata* (Lacy et al. 1989, Wilson et al. 1994), patch-matrix
163 assumptions applied in managing boreal forest birds (Schmiegelow and Monkkonen 2002),
164 indicator species concepts applied in forest management (Simberloff 1998, Lindenmayer and
165 Likens 2011), the intermediate disturbance hypothesis applied to fire management in an

166 Australian national park (Lindenmayer et al. 2008d, Lindenmayer et al. 2008e), and landscape-
167 planning tools used for predicting the distribution of small mammal habitat (Corry and Nassauer
168 2005). Given the pervasive use of theory in conservation and the potential for management
169 mistakes, there is substantial motivation for applied ecologists to use theory more effectively.

170

171 **RESEARCH PLANNING AND FRAMING**

172 The early critics of applying theory in conservation and ecology nevertheless emphasised that
173 theory is still valuable because it provides important conceptual frameworks to motivate and
174 guide research (Shrader-Frechette and McCoy 1993, Doak and Mills 1994, Schemske et al.
175 1994). Metapopulation theory is a good example (Doak and Mills 1994, Krohne 1997, Esler
176 2000, Driscoll 2007). Even though a species may not conform to a particular type of
177 metapopulation, effective species management depends on understanding the processes that are
178 highlighted by metapopulation theory such as dispersal and persistence of local populations
179 (Hanski 1999, Hanski and Gaggiotti 2004). Research addressing the questions that arise from
180 metapopulation theory will lead to new knowledge that better identifies theory relevant to a
181 given system, and contributes general insight into how common particular phenomena might be
182 (Driscoll 2007). By investigating one theory, a researcher may learn that alternative theories are
183 more likely to apply. An important role of theory is therefore to alert the researcher to the range
184 of possible ecological phenomena, to guide the formulation of research questions about the most
185 important processes or patterns, and to help structure learning such as through rejection of initial
186 theories and elaboration of alternatives.

187

188 This planning and framing function of theory has a negative side. With a pivotal role in setting
189 up research questions, theory can constrain the design of experiments, limiting the scope of
190 questions that are asked and the approaches that are taken. For example, Haila (2002) argued that
191 the popularity of island biogeography theory constrained much research to questions about the
192 influence of patch size on species richness, but these questions often have limited relevance in
193 conservation. Working within the conceptual domain of island biogeography prevented a focus
194 on other questions that are important for conservation, particularly about how species use the
195 matrix, habitat loss, fragmentation and causes of extinction (Haila 2002). Similarly, the patch-
196 matrix assumption of metapopulation theory leads to a focus on presence or absence of a species
197 in the matrix. However, in many landscapes, there may be a continuum of landscape use (Austin
198 1999a, Fischer and Lindenmayer 2006). Using a patch-matrix model, conservation attention is
199 directed towards creating habitat patches and connections, whereas in some systems it is possible
200 that more substantial conservation gains could be made by altering the "matrix" (Franklin 1993,
201 Fahrig 2001, Fischer and Lindenmayer 2006), by increasing the total amount of habitat
202 (Schmiegelow and Monkkonen 2002, Fahrig 2003), or improving patch condition (Harrison and
203 Bruna 1999).

204

205 The narrow conceptual domain of theory can slow the rate of knowledge acquisition. For
206 example, edge effects theory emphasizes interactions between species at the boundary of
207 adjacent vegetation types, and much research has focussed on how predator-prey interactions are
208 influenced by the nature of the edge (Paton 1994, Lahti 2001, Sisk 2007). However, in a review
209 of predator-prey theory, Ryall and Fahrig (2006) argued that faster progress in understanding
210 interactions between predators and their prey in patchy landscapes required a landscape scale

211 approach. The popularity of edge theory, combined with its emphasis on the patch scale, may
212 have slowed progress in the field by directing much research towards questions that were not the
213 most important for understanding the phenomenon (Ryall and Fahrig 2006). More rapid research
214 progress is therefore likely when a broad conceptual framework is used for guiding and
215 interpreting research rather than a narrow focus on particular theory.

216

217 **COMMUNICATION AMONG SCIENTISTS**

218 While theory can fail in its predictive and planning roles at the beginning of the research cycle,
219 theory should nevertheless be useful towards the end of the cycle as a communications tool. The
220 practicalities of communicating with an international scientific audience demand that a common
221 set of terms is available for describing particular phenomena. Researchers who study different
222 taxonomic groups on opposite sides of the globe can nevertheless find common ground through
223 shared concepts and in practice, through literature searches for shared key-words associated with
224 a particular theory (e.g. Akcakaya et al. 2004, Ranius 2007). Given the potential explanatory
225 value of theory in particular case-studies, theory could provide an essential set of concepts that
226 facilitate effective communication. For example, metapopulation theory includes a well defined
227 set of metapopulation types based on variation in extinction risk, dispersal rate, the rate of
228 extinction relative to colonization and the cause of extinctions (stochastic or deterministic)
229 (Harrison and Taylor 1997, Hanski 1999, Driscoll 2007). After gathering evidence about a study
230 system using a metapopulation approach, the kind of metapopulation dynamics that the system
231 displays can be readily communicated to a wide audience (e.g. Dunham and Rieman 1999).
232 Interpreting case studies in terms of popular theory is therefore like translating the study into an
233 international language; it enables studies that report similar phenomena to be readily identified

234 and linked, with the potential for synthesis of the circumstances in which those phenomena are
235 important.

236

237 Although theory has the potential to enhance progress by increasing the efficiency and extent of
238 knowledge transfer between researchers, there are two key barriers undermining this ideal. First,
239 effective communication can be confounded by poorly defined terms or conflicting definitions
240 (Peters 1991, Shrader-Frechette and McCoy 1993, Hall et al. 1997). For example, fragmentation
241 is one of the most widely applied concepts in conservation (Fazey et al. 2005) but poor definition
242 of terms (e.g. "habitat") and domain (e.g. amount, condition, isolation and breaking apart of
243 habitat) has led to substantial confusion (Fahrig 2003, Lindenmayer and Fischer 2007).

244 Similarly, the indicator species approach can refer to using particular taxa as surrogates for
245 environmental change (Landres et al. 1988), but can also simply refer to the species that is
246 measured without assuming that the species provides additional insight into the state of the
247 ecosystem (Woodward et al. 1999, Heink and Kowarik 2010). With multiple meanings, it is
248 difficult to communicate particular effects and this has substantial, practical consequences.

249 Confused application of terms inhibits knowledge development and sharing, promotes
250 unproductive debate, and prevents effective mitigation of threatening processes (Lindenmayer
251 and Fischer 2007, Lindenmayer and Likens 2011), with the potential for major errors in resource
252 management (Shrader-Frechette and McCoy 1993). Although poorly defined terms are inevitable
253 as new fields expand (Hodges 2008), much ecological theory and the associated terms are in
254 need of clarification (see the many papers cited in WebTable 1 of Hodges 2008).

255

256 A second reason that theory struggles to serve an ideal communications role is that there can be
257 multiple theories that describe the same phenomenon (Austin 1999b). Different streams of theory
258 can develop in isolated "ivory publishing towers", insulated by separate sets of key-words and
259 particular applications. For example, the process of net movement of organisms from one region
260 to another is described by at least six separate theories: mass-effects metacommunity theory
261 (Shmida and Ellner 1984, Shmida and Wilson 1985, Leibold *et al.* 2004), spill-over edge effects
262 (Rand *et al.* 2006), spatial subsidies (Polis *et al.* 1997), source-sink effects (Pulliam 1988),
263 rescue-effects (Brown and Kodric-Brown 1977) and mainland-island metapopulation theory
264 (Harrison 1991). Despite substantial conceptual overlap, some of these theories have limited
265 overlap in the literature. Since 1997, 52 papers have cited the key spatial subsidies paper by Polis
266 *et al.* (1997) and mention spatial subsidies in the abstract or key words. Of these, two papers
267 cited one of the key mass-effects papers (Shmida and Ellner 1984, Shmida and Wilson 1985),
268 two cited Leibold *et al.* (2004) and three mentioned metacommunities. Conversely, 33 papers
269 have cited the key mass-effects papers (Shmida and Ellner 1984, Shmida and Wilson 1985) since
270 1997 and also mention mass effects in their abstract or key words. One of these papers also cites
271 Polis *et al.* (1997). We acknowledge that each theory includes different nuances (e.g. source-sink
272 effects and rescue-effects imply that the sink is not a self-sustaining population while the others
273 do not necessarily imply that; spatial subsidies imply mass movement of any resource whereas
274 mass effects refers only to organisms). Nevertheless, any one theory could be readily adapted to
275 cover the entire suite of nuances, delivering a set of terms that can be shared more widely across
276 case-studies.

277

278 Redundancy in theory is widespread. Other examples of redundancy can be found in the overlap
279 of island biogeography, metacommunity, metapopulation and nested subset theory (Driscoll
280 2007, 2008, Simberloff and Collins 2010), keystone theory and a suite of redundant alternative
281 terms (transformers, foundations, engineers, dominants, Simberloff 2004), r-K life history
282 strategies (Southwood 1977), unified theories in macroecology (McGill 2010), habitat
283 heterogeneity / disturbance theory (Huston 1979) and ecological stability concepts, where
284 Grimm and Wissel (1997) identified 163 definitions for 70 different stability terms, when there
285 are only six different stability phenomena (Grimm and Wissel 1997).

286

287 Research progress is slowed when ecologists are divided by redundant theory. In their classic
288 paper on succession theory, Connell and Slatyer (1977) described a succession where earlier
289 colonists of recently disturbed sites (good dispersers) were replaced by late-arriving stronger
290 competitors (poor dispersers). Connell and Slatyer (1977) suggested there was very little
291 evidence for this "tolerance" model of succession. However, there were many examples of this
292 phenomenon in the published literature by the mid-1970s, but under different names. The
293 concept of fugitive species is consistent with the tolerance succession model, where highly
294 dispersive species that are poor competitors are the first to establish in recently disturbed sites
295 (Elton 1927, Hutchinson 1951, Horn and Mac Arthur 1972). These early successional niches
296 become unavailable to fugitive species as slower-dispersing, strong competitors arrive at the site
297 and competitively exclude the fugitives. Southwood (1977) listed 11 synonyms of fugitive
298 species, in addition to his focus on r life history strategies from MacArthur and Wilson's (1967)
299 r-K spectrum. The new developments in succession theory (Connell and Slatyer 1977) were
300 inhibited by the lack of cross-referencing to pre-existing terms for the same phenomenon.

301
302 Although we do not know the circumstances in which the tolerance model of succession was
303 developed, there are two possible reasons to explain why new, redundant theory might be
304 developed; (1) researchers genuinely may not recognise that a particular phenomenon is already
305 well studied because the phenomenon has previously been described using a different theoretical
306 framework and terminology; or (2) pre-existing terms and case studies may be ignored or
307 overlooked to make the newly presented idea appear novel, with rewards in terms of publication
308 in leading journals and high citation rates as the originators of new theory. Either way, research
309 progress is slowed by redundant theory.

310

311

312 In the next three sections, we propose responses and solutions to the weak predictive success of
313 theory, the planning and framing constraints, and the communication conundrums (Table 1). We
314 summarize these solutions in a conceptual framework to illustrate how the solutions can be
315 integrated with ongoing research (Fig. 1).

316

317 **PREDICTION: SOLUTIONS**

318 A primary motivation for developing and testing theory in any field is to make predictions about
319 new cases (Peters 1991). To date in ecology, the ability to make accurate predictions has often
320 proven to be an unrealistic expectation (e.g. Lindenmayer et al. 2003). Optimistically, we regard
321 this as a lack of progress, rather than as affirmation of the general nature of ecological theory
322 relative to the idiosyncrasy of ecological systems (Shrader-Frechette and McCoy 1993, Doak and
323 Mills 1994). There are many case studies where particular theory **does** apply, and so progress

324 requires understanding the scope of application of theory, and not in discovering a theory that
325 has universal application across nature (Pickett et al. 1994).

326
327 The systematic review approach advocated by the Collaboration for Environmental Evidence
328 (Pullin and Knight 2009), or collaborative reviews such as those undertaken by the National
329 Center for Ecological Analysis and Synthesis in the USA (Reichmann 2004) could be readily
330 adapted to fulfill the role of defining the bounds within which particular theories apply, including
331 the temporal, geographic, environmental and taxonomic bounds. These review approaches may
332 be strengthened in topic areas where there is currently substantial redundancy by resolving the
333 communications flaws in the way theory is used. All case studies could then be flagged with
334 agreed key words associated with rationalized theory, eliminating the risk that relevant studies
335 could remain hidden by alternate sets of words associated with redundant theory. The aim of
336 systematic or other reviews would be to describe contingent theory, such as in edge effects
337 theory, where contingency may be related to the degree of habitat loss and fragmentation or the
338 relative availability of resources across edges (Batary and Baldi 2004, Ries et al. 2004).

339
340 Lawton (1999) argued that developing predictive theory contingent on circumstances could be
341 most successful in macro-ecology. Such contingent theory might be quite useful for macro-
342 conservation such as continental or global reserve design. However, most conservation biology is
343 focused on population, species and community level processes. The prospects for developing
344 contingent theory may be reasonable for population processes, but dismal for the more complex
345 interactions that are typical at a community level (Lawton 1999, Simberloff 2004). Developing
346 contingent theory with predictive value remains a worthy goal (Shrader-Frechette and McCoy

347 1993). However, if common themes do not emerge through reviews of theory, the approach we
348 have outlined will still remain valuable for demonstrating the absence of predictable
349 contingencies, with the implication that data must be collected for each case study because best-
350 guess management decisions based on theory do not exist.

351

352 The extent to which best-guess management decisions exist needs to be more effectively
353 communicated to managers, policy makers and more broadly, to avoid the perverse outcomes
354 that are possible when theory is applied inappropriately. Mechanisms for achieving improved
355 science communication have been widely discussed. Cash et al. (2003) established a framework
356 for improving knowledge transfer that included maximizing the salience, credibility and
357 legitimacy of the messages provided by scientists. Communicating across the science-policy or
358 science-management divide requires a range of boundary-spanning actions, such as cross-
359 institution collaboration (Cash et al. 2003, van Kerkhoff 2005, Roux et al. 2006, Reyers et al.
360 2010), scenario-planning (Vanston et al. 1977, Peterson et al. 2003, Cumming 2007, Palomo et
361 al. 2011), delivering information across the boundary in a salient format (McNie 2007, Likens
362 2010) and actions to develop personal relationships across institutions (Gibbons et al. 2008b).
363 Broad public engagement (Salzman 1989, Pace et al. 2010) via a range of mechanisms
364 (Groffman et al. 2010, Nisbet et al. 2010) is also an important aspect of boundary-spanning,
365 particularly because public education contributes to shifting national norms (Reyers et al. 2010).
366 Scientific organisations and government agencies both can play important roles in knowledge
367 transfer (e.g. Calow et al. 1990, Vitousek et al. 1997, Osmond et al. 2010, Pouyat et al. 2010,
368 Driscoll et al. 2011), but improved boundary-spanning often requires reforms to academic and
369 government job performance indicators (Gibbons et al. 2008b, Cummings et al. 2010, Pace et al.

370 2010, Whitmer et al. 2010). Reducing the misapplication of theory therefore requires a
371 sophisticated approach to boundary-spanning, in addition to the improved use and understanding
372 of theory among ecologists.

373

374 **RESEARCH PLANNING AND FRAMING: SOLUTIONS**

375 Given the evidence that theory can be a heuristic "strait-jacket", a new approach is needed to
376 break out of the "asylum" of specific theories. The planning and framing value of theory could be
377 made redundant by adopting a list of phenomena or questions that researchers should consider
378 when planning applied ecological research. For example, in considering the role of theory in
379 restoration ecology, Palmer *et al.* (1997) reduced the heuristic value of two ecological theories
380 into two salient questions. First, the "field of dreams" hypothesis predicts that providing a
381 suitable physical environment enables species to colonize restored land, leading to the question:
382 Are there critical thresholds of physical habitat restoration? Second, the initial floristics model
383 of succession predicts that only species actually placed into a site at the beginning of restoration
384 will remain over time, suggesting the question: At what spatial scale do we need to restore
385 species diversity (Palmer *et al.* 1997)?

386

387 A broad, but simple and widely recognized checklist of concepts or questions would remove the
388 emphasis from popular theories with their built-in assumptions about how systems function and
389 direct attention to a full range of possible phenomena that should be considered in research and
390 management planning. There are few examples that might qualify as such a list in the literature
391 (e.g. Schoener 1986, Grimm and Wissel 1997, Schulte *et al.* 2006, Lindenmayer *et al.* 2008a).
392 Guisan and Thuiller (2005) listed factors to consider in spatial distribution modeling including

393 climatic limitations, dispersal, disturbance, resource availability and species interactions.

394 Although different lists may be most pertinent in different contexts, it should be possible to
395 develop generic lists applicable across a broad field of study.

396

397 As a step towards a generic list that could provide a heuristic framework for ecological research
398 into species' conservation, we build on Guisan and Thuiller's (2005) list to suggest a broad set of
399 guiding questions (Table 2). By considering this range of questions and, importantly, the many
400 possible interactions, research planning in applied ecology can maintain a broad conceptual basis
401 that avoids the heuristic limitations of individual theories. The eight questions that we have listed
402 (Table 2) are not conceptually mutually exclusive. For example, population demographics
403 determine abundance and survival and so are implicated in most of the other questions. However,
404 we think this relatively short list draws attention to most of the key areas that are important for
405 ecological research in species conservation, with minimal repetition and therefore may be
406 adequately generic to provide planning support for a broad range of studies. More detailed lists
407 of phenomena may be needed to 'unpack' our broad list, such as the many ways that predators
408 and prey may interact depending on their degree of specialization and dispersal capacity (Taylor
409 1990, Ryall and Fahrig 2006). Further, our list may be nested within, or work in parallel with,
410 checklists focused on community or ecosystem levels of organization, such as that developed by
411 Grimm et al. (1997) for describing stability phenomena.

412

413 After a broad list of phenomena is developed, the second step in research planning is to make the
414 list operational. A set of conceptual models is needed that reduce the array of possible
415 phenomena into a framework of plausible phenomena relevant to the case study. The third step in

416 research planning would then be to develop testable questions about pertinent aspects of the
417 system based on a conceptual model of that system (Lindenmayer and Likens 2009). These new
418 case studies would be interpreted using an inductive approach ("one must confront the facts of a
419 particular situation, and then look for a way to make sense of them." p. 123, Shrader-Frechette
420 and McCoy 1993). After an initial inductive approach reveals theories that are likely to apply, a
421 hypothetico-deductive approach may then yield further insights into how the system works
422 through secondary case studies (Fig. 1).

423

424 Encouraging ecologists to adopt this approach may require recognition by journal editors and
425 reviewers that using a checklist for framing new research is a legitimate and often better
426 approach than using conceptually narrow theory. Ecologists may also be encouraged by past case
427 studies that have used an approach similar to the one we have described. For example,
428 discovering acid-rain impacts in the Hubbard Brook Experimental Forest in New Hampshire,
429 USA was based on research questions arising from a conceptual model of the system, not
430 ecological theory (Likens and Bormann 1995, Lindenmayer and Likens 2009). Checklists are
431 frequently presented in ecology-related papers, and sometimes are well received and highly cited
432 (Grimm and Wissel 1997, de Groot et al. 2002, Lindenmayer et al. 2008a). Ecologists may
433 therefore be amenable to taking the small additional step of using a checklist for planning and
434 framing research.

435

436 **COMMUNICATION AMONG SCIENTISTS: SOLUTIONS**

437 In the short term, journal editors and reviewers could help to reduce the growth of redundant
438 theory by demanding that authors fully justify any new terms or theory in the context of all

439 preceding theories that address related phenomena. However, a new series of syntheses is needed
440 to help rationalize the existing surplus of overlapping and redundant theory and to define terms.
441 In cases where multiple theories explain the same process leading to isolated enclaves of
442 research, work is needed to draw together those currently separate fields by building a unifying
443 set of concepts and eliminating redundant terminology. Importantly, such rationalization of
444 theory needs to focus on ecological phenomena (e.g. disturbance) rather than a defined area of
445 theory (e.g. the intermediate disturbance hypothesis). Reviews need to gather together all of the
446 theories that describe a particular process or pattern and then build a synthesis of the collected
447 overlapping, complementary and redundant theories. The aim of these syntheses would be to
448 define the minimum theory set that describes particular phenomena and to position the
449 rationalized theory within the broader framework of other syntheses, demonstrating any links
450 and nested relationships. This approach is similar to the method of 'integration' across ecological
451 fields advocated by Pickett et al. (1994), but places emphasis on consolidating existing
452 understanding into more efficient frameworks. This approach also has analogues in the data-
453 mining literature, where discoveries can be more efficient if a set of non-redundant search rules
454 are used (Lo et al. 2009), and in nursing where theoretical concept analysis (Risjord 2009) is
455 used for clarifying the definitions and use of terms in support of theory development. The
456 benefits of rationalization of ecological theory are that theory would be more accessible, it would
457 provide a coherent basis for choosing particular theory, and would break down the conceptual
458 and communications barriers between fields that address the same phenomena.
459
460 Components in the rationalization of theory might include (1) a scope defined by a phenomenon
461 or interactions among them; (2) a collation of theories and terms used to describe the

462 phenomenon, and; (3) synthesis. The synthesis would remove redundancy, formulate competing
463 explanations into a single framework, link that framework to pre-existing rationalizations of
464 theory and provide definitions. As a simplified example, (1) the scope could be defined as a
465 pattern of complete occupancy of all of the available niche or 'preferred' habitat. (2) Some
466 relevant theories describing this pattern include niche theory, the metacommunity species-sorting
467 concept, and the storage effect (Warner and Chesson 1985). (3) A synthesis would identify and
468 remove redundancy in niche theory and the metacommunity species-sorting concept (both imply
469 a high level of dispersal and good establishment). The synthesis would also build a framework
470 that links to broader rationalizations of theory (if they existed) and would recognize that the
471 storage effect and niche theories are competing mechanisms. This third component therefore
472 guides the synthesis to distinguish between theories that use different words to describe the same
473 phenomenon (and are therefore redundant, e.g. mass effects versus spill-over edge effects) and
474 theories that present different mechanisms to describe the same process or pattern (and are
475 therefore competing, but not redundant).

476

477 This approach to rationalization of theory probably will not, by itself, resolve the expansion of
478 redundant theories and associated terms. If novelty remains a pre-eminent criterion for
479 publishing success, then authors will be motivated to label established phenomena with new
480 theory based on hair-splitting or inadequate knowledge of previous work (Belovsky et al. 2004).
481 Further, Hodges (2008) argued that the main reason past attempts to rationalize the use of
482 ecological terms have failed is that subsequently, ecologists have not accessed the most up to
483 date definitions. This problem could be minimized if syntheses were managed using agreed

484 protocols and were made widely available through a centralized reputable organization (Fazey et
485 al. 2004).

486

487 A centralized organization for theory synthesis could be modeled on a number of existing
488 collaborations. For example, in the medical field, the Cochrane Collaboration provides a central,
489 widely used and respected repository for systematic reviews of medical interventions (Bero and
490 Rennie 1995). More recently, the Collaboration for Environmental Evidence has established this
491 model for conservation and management interventions (Pullin and Knight 2009), and is rapidly
492 growing in scope and impact (CEE 2010). In forestry, an authoritative dictionary of 4500 words
493 is maintained through international collaboration by the Society of American Foresters (Helms
494 1998). Each of these collaborations involves leading researchers in the field, ensuring quality and
495 legitimacy, and provides a central web-based location where reviews or definitions can be
496 readily retrieved.

497

498 The International Nucleotide Sequence Database Collaboration (<http://www.insdc.org/>) presents
499 another model of international scientific cooperation that a new collaboration for ecological
500 theory might learn from. The INSDC involves cooperation of three organizations that catalogue
501 and make available genetic sequence data submitted by researchers from around the globe
502 (Cochrane et al. 2011). Important elements that could be adapted in an ecological theory
503 collaboration are the free sharing of information, voluntary international cooperation, the use of
504 multiple hubs to ensure wide participation and data security, knowledge collation based on peer-
505 reviewed publications, and a strong link between acceptance by journals and author participation
506 in the collaboration (through the INSDC accession number system, Cochrane et al. 2011).

507

508 An authoritative and accessible structure inspired by existing models such as CEE, and INSDC,
509 would expedite the rationalization of ecological theory. Major national and international
510 ecological organizations may have the capacity and authority to develop a collaboration that
511 would be widely respected by ecologists (e.g. Ecological Society of America, International
512 Association for Ecology, the Society for Conservation Biology, other major national ecological
513 societies). Such a collaboration would enable existing theory to be elaborated, refined, or
514 overthrown when necessary, and ensure that only truly new ideas made it into the revised
515 rationalization. It could provide a forum for debating and updating definitions of ecological
516 terms. Importantly, with a single repository for theory, all ecologists would know where to
517 access the most up-to-date ecological theory and definitions, and would have a framework for
518 selecting an appropriate theory that describes their case study. A central repository for theory and
519 definitions would also be a valuable new source of credible and salient information (Prendergast
520 et al. 1999, Cash et al. 2003, Janse 2008) for application in spanning the boundaries between
521 science and management.

522

523 **PERSPECTIVES FROM LONG TERM RESEARCH**

524 The following section comprises two case studies that illustrate many of the problems and some
525 of the solutions in prediction, planning and communication that we have discussed. The case
526 studies are unusual in that a wide range of ecological theories have been tested using extensive
527 and often long-term empirical data (summarized in Lindenmayer 2009a, b). These long-term
528 studies provide a rare opportunity to examine how theory has been used in making predictions, in
529 developing research, and in communicating theory.

530

531 *Case study #1 – The Tumut Fragmentation Study*

532 The Tumut Fragmentation Study in southern New South Wales, south-eastern Australia,
533 commenced in 1994 and continues today. The study has focused on the occurrence and dynamics
534 of mammals, birds, reptiles and other taxonomic groups within a landscape dominated by
535 plantations of exotic *Pinus radiata* (Lindenmayer 2009a). The study at Tumut includes 86
536 remnant patches of *Eucalyptus* forest stratified by patch size, shape, forest type, and time since
537 fragmentation. In addition, the study includes 40 “control” sites located within large areas of
538 unfragmented eucalypt forest and 40 sites in the plantation “matrix” surrounding the patches of
539 remnant eucalypt forest (Lindenmayer 2009a).

540

541 *Prediction* — There are several examples of species from the Tumut study that support
542 metapopulation predictions such as by showing expected relationships with patch size and
543 isolation, including fitting incidence-function models (Lindenmayer et al. 1999c, Lindenmayer et
544 al. 2001). However, many species were not primarily influenced by landscape features of a
545 patch-matrix model. The occurrence of some bird and marsupial species was poorly predicted by
546 metapopulation models because they occurred throughout the matrix or were very widely
547 dispersing (Lindenmayer et al. 1999c, Lindenmayer et al. 2001). Patch size and isolation was
548 unimportant for frog species, which were instead strongly influenced by the location of wide,
549 shallow swamps (Parris and Lindenmayer 2004). Further, Fischer et al (2005) showed that a
550 habitat continuum model including food, shelter, space and climate axes described the abundance
551 and distribution of reptiles in the Tumut study better than the patch-matrix model.

552

553 A range of theory in addition to metapopulation theory has been tested using the Tumut study
554 system (Table 3). In general, ecological theory has been poorly supported, and when theory was
555 consistent with field evidence, it was usually for only a subset of species and circumstances. One
556 exception was the peninsula effect (Simpson 1964), which involved a simple test of changes in
557 species richness of one taxon (birds). Our experience in challenging ecological theory with field
558 data from Tumut strongly reinforces our argument that ecological theory often has limited
559 predictive value.

560

561 With limited predictive ability, application of popular theories to management in the Tumut
562 study led to poor management decisions initially, but with sustained boundary-work (*sensu*
563 Guston 1999), better outcomes have been achieved. At the outset of the project, managers came
564 into the planning room with the idea that there is a minimum patch size warranting protection.
565 This pre-conception arose from an understanding of island biogeography and nested subset
566 theory, both of which predict that small patches will have fewer species and, under nested subset
567 theory, species in small patches are a subset of those in larger patches (Cole 1983). This meant
568 that small patches could be cleared to reduce impediments to pine plantation establishment with
569 no impact on conservation values (this argument had also been made in North America based on
570 island biogeography theory, see Simberloff 1988). Subsequent research demonstrated that
571 nesting of the biota was weak in the Tumut study system, and small remnants had conservation
572 value that larger remnants did not (Fischer and Lindenmayer 2005). This new message about the
573 importance of small patches was communicated to managers on field days, and to corporate
574 planners during meetings in city office towers. As a consequence, the minimum size of patches
575 that must be retained during plantation establishment was reduced from 10 ha to 1 ha. This is a

576 critical change because plantation expansion in the Tumut region targets former grazing land that
577 supports many small patches of threatened woodland communities (Lindenmayer et al. 2008c).

578

579 *Research Planning and Framing* — The work at Tumut commenced as an investigation of
580 landscape context and habitat fragmentation, a choice that was strongly influenced by
581 metapopulation theory (Lindenmayer et al. 1999b). This initial focus and extensive research
582 effort based on a patch-matrix model (e.g. Lindenmayer et al. 1999c, Lindenmayer et al. 2001)
583 may have slowed progress towards improved plantation management. Fragmentation concepts
584 make the assumption that the matrix is inhospitable, without beneficial effects for patch-based
585 species. However, the strong influence of the matrix on population survival in patches was
586 revealed in a matrix harvesting experiment (Lindenmayer et al. 2009). Birds and one marsupial
587 declined in patches when the entire surrounding pine matrix was harvested, but not if only half of
588 the surrounding matrix was cleared. Through negotiation with land managers, these findings
589 have recently led to the spatial re-scheduling of harvesting around patches. We speculate that
590 these insights may have been gained more quickly (and embraced more quickly and earlier by
591 plantation managers) if a checklist of research planning questions had been followed. A checklist
592 would have encouraged an early focus on the possible role of the pines as habitat, rather than the
593 focus on patch-matrix-based theory. Nevertheless, we acknowledge that the delay in progress
594 was short, because results that contradicted patch-matrix assumptions quickly accumulated. The
595 "metapopulation approach" to research in fragmented landscapes (Hanski and Gaggiotti 2004,
596 Driscoll 2007) is probably the most sophisticated approach to landscape scale research that is
597 based on ecological theory. In some situations, the metapopulation approach may be as good (or

598 almost as good, in the case of Tumut) as a checklist approach because the approach emphasises a
599 broad range of questions.

600

601 *Communication Among Scientists* — There is some evidence supporting limited communication
602 among theoretical fields arising from the Tumut research. A major publication examining bird
603 distributions at Tumut was framed in the context of "fragmentation" (Lindenmayer et al. 2002b).
604 However, this study had important implications for metacommunity theory, where mass effects
605 strongly influenced the bird community in pines adjacent to eucalypt remnants and where
606 species-sorting and potentially patch-dynamic processes drove some species to be most abundant
607 in the smallest patches, or in intermediate-sized patches. Further, there was no evidence of any
608 spatial dependence, originally interpreted as evidence against a mainland-island metapopulation,
609 but also important evidence that neutral metacommunity processes are not predominant. Despite
610 these important implications for metacommunity theory, only four of 97 papers that cited
611 Lindenmayer et al (2002) have a metacommunity focus (and three of these were written by us).
612 In contrast, aligned with the fragmentation framing of the paper, 71 of the citing papers include
613 fragmentation as a searchable term. As a second contrast, a paper with metacommunity in the
614 title and published in the same year (Mouquet and Loreau 2002) was cited 143 times, with 67 of
615 the citing papers including "metacommunity" in the abstract, keywords or title. We speculate that
616 if Lindenmayer et al. (2002) had placed emphasis on metacommunity theory in the abstract and
617 discussion, that these important insights into metacommunity processes would have been more
618 regularly cited in the growing metacommunity literature.

619

620 *Case Study #2 – Wet Forest in the Victorian Central Highlands*

621 Our second case study focuses on the wet forests of Victoria, south-eastern Australia, where
622 research commenced in the early 1980s (reviewed by Lindenmayer 2009a). The core of the study
623 consists of 161 sites that have been surveyed on a repeated basis over the past 27 years for
624 arboreal marsupials and vegetation structure (Lindenmayer et al. in press) and ten years for forest
625 birds (Lindenmayer 2009b). Most sites are dominated by Mountain Ash *Eucalyptus regnans* or
626 Alpine Ash *E. delegatensis*, with a wet sclerophyll forest or cool temperate rainforest understorey
627 (Ashton 2000). An array of projects has been completed and others are ongoing. These include
628 studies of old growth forest (Lindenmayer et al. 2000), the rate of collapse of large trees with
629 hollows (Lindenmayer et al. 1997, Gibbons et al. 2008a), the use of large trees with hollows by
630 arboreal marsupials (Lindenmayer et al. 1990b, Banks et al. 2011c), post-fire ecological recovery
631 (Banks et al. 2011a, Banks et al. 2011b) and the influence of variable retention harvesting on
632 small mammal populations (Lindenmayer et al. 2010).

633

634 *Prediction* — The development and use of theory in the wet forest research provides a case in
635 point similar to that proposed in Figure 1. In Figure 1 we suggest that initial research should be
636 developed in an atheoretical context using a checklist, and then theories relevant to the initial
637 data sets can be identified and further tested (steps 4-5 in Fig. 1). Much of the wet forest research
638 has made little or no use of theory. Instead, the research is framed around specific problems
639 about habitat use and resource provision. However, emerging from this approach are two areas of
640 theory that have successfully aided interpretation, reframing and further testing of predictions.
641 First, the influence of phenomena at a hierarchy of spatial scales was evident from over a decade
642 of research into Leadbeater's possum *Gymnobelideus leadbeateri*, a threatened species

643 (Lindenmayer 2000). This 'hierarchy theory' (Allen and Starr 1988) was effectively applied to
644 model the possum's spatial distribution (Mackey and Lindenmayer 2001) and forms an important
645 component of subsequent checklists for guiding forestry research (Lindenmayer et al. 2006).
646 Second, the reliance of arboreal marsupials on tree hollows (Lindenmayer et al. 1990b) in an
647 ecosystem strongly affected by fire and post-disturbance logging revealed that large trees
648 remaining after disturbance provide critical resources for Leadbeater's possum. These
649 observations contributed to the emergence of 'biological legacy theory', which predicts that the
650 outcome of disturbance is mediated by the resources that linger afterwards (Franklin et al. 2000,
651 Franklin et al. 2002, Lindenmayer and Ough 2006). In the Victorian wet forest, like at Tumut,
652 reasonable predictions could not be made using "off the shelf" theory (Table 4). However, theory
653 that arose from detailed empirical work in the wet forest study system could be applied to make
654 predictions about that system and to reframe ongoing research.

655
656 Predictions from theory have not generally featured in the management of the wet forest study
657 system. Nevertheless, a number of important lessons about effectively engaging with managers
658 have been learned. Particularly, one form of science communication has not worked – providing
659 reprints of scientific articles to resource managers and conservation practitioners. These are not
660 read by either group. Our experience is consistent with other research in which resource
661 managers based their management decisions on experience and not on written scientific outputs
662 (Sutherland et al. 2004, Fazey et al. 2006), a situation that has a broad range of underlying causes
663 (Jasanoff 1987, Cash et al. 2003). In contrast, perhaps the most effective science-
664 communications strategy has been to use grant funding to permanently base a research officer in
665 the field. The person serves a boundary-spanning function by working full-time on the research

666 program but staying connected on a daily basis with resource managers from government
667 agencies (boundary-work, Guston 1999). With high turnover of staff in agencies, this capacity
668 for regular communication has proven invaluable for briefing new staff about ongoing research.
669 Effective communication is also facilitated by regular field workshops, enabling a two-way
670 dialogue with agency personnel. Some workshops have become major international meetings and
671 provided a setting in which new forest management initiatives have emerged (Lindenmayer et al.
672 2004). In addition to organizational boundary-spanning, public outreach has been a feature of
673 both the wet forest and Tumut research programs (e.g. Lindenmayer and Possingham 1995b,
674 Lindenmayer et al. 2008b). We have found that books, plus posters and brochures, are more
675 salient boundary-spanning objects for research users and managers than peer-reviewed scientific
676 articles (Cash et al. 2003, McNie 2007).

677

678 *Research Planning and Framing* — The wet forest research commenced as an applied
679 investigation into the habitat requirements of Leadbeater's possum (Lindenmayer et al. 1990a).
680 Early results showed that high quality possum habitat could be generated by retaining an
681 adequate number of old trees in logging coupes (Lindenmayer et al. 1991). However, a strong
682 focus on metapopulation modelling during the early and mid 1990s distracted from these initial
683 coupe-level conservation recommendations. Metapopulation simulations emphasised the pre-
684 eminance of whole patches for the survival of Leadbeater's possum (Lindenmayer and
685 Possingham 1995a), resulting in conservation planning that focused on reservation. However,
686 later evidence revealed that disturbed forest was more important for possum survival than
687 previously assumed (Lindenmayer and McCarthy 2006). Building on the initial site-level phase
688 and the subsequent metapopulation phase, a new imperative surfaced that emphasised features at

689 three spatial scales: habitat features at the coupe-level, riverine buffers and corridors at the forest
690 block level, and reserves at the regional level (Lindenmayer and Franklin 1997). This recognition
691 meant that the initial emphasis on coupe-level management had to be revisited. New discussions
692 between researchers and managers led to establishment of a variable-retention harvesting
693 research project aimed at better integration of conservation with production at a fine spatial scale
694 (Lindenmayer et al. 2004).

695

696 Rather than having to go through this learning process with the associated delay in introducing
697 the variable-retention harvesting idea to Victorian forest managers, we believe in hindsight that
698 faster progress might have been expected if a checklist of research questions had been used from
699 the outset. With a checklist (e.g. Lindenmayer et al. 2006), all scales would have been examined
700 earlier on, ensuring that the emphasis on coupe-level structure was maintained throughout the
701 research program. It could be argued that a useful checklist of questions may not have emerged
702 first without a detailed series of tests of different areas of ecological theory. Regardless of the
703 truth of such an argument, there is no need for future research to suffer the same delays and
704 opportunity costs associated with sequential testing of sometimes overlapping, sometimes
705 disconnected ecological theory.

706

707 *Communication Among Scientists* — There is evidence from the wet forest study that linking
708 observations to appropriate theory enhances communication of the observed phenomenon.
709 Lindenmayer and Possingham (1996) present an early and clear description of the biological
710 legacy concept without using the term "legacy". The term "biological legacies" first appears in
711 the same context in which we use it (Franklin et al. 2002) in Lee et al. (1997) . Lindenmayer and

712 Possingham's (1996) metapopulation model identified the importance of dead trees for reducing
713 extinction risk of Leadbeater's possum after fire. However, that study has not been cited by
714 papers that also used "biological legacies" as a searchable term. This contrasts with other papers
715 that draw on the wet forest case study and specifically mention biological legacies (Franklin et
716 al. 2002, Lindenmayer and McCarthy 2002, Lindenmayer and Noss 2006, Lindenmayer and
717 Ough 2006), for which 9-14% of citing papers also mention biological legacies. If one wished to
718 review phenomena associated with the biological legacy concept, the latter papers would be
719 readily discovered, but the earlier modelling work may not be.

720

721 *Case Studies – summing up*

722 The Tumut and Victorian wet forest case studies provide support for our key concerns about the
723 application of theory in conservation, namely: theory has little predictive value when applied in
724 new situations, theory can constrain research progress when used to plan research, and theory
725 can limit communication when multiple sets of terms are used to describe the same phenomenon.
726 However, the case studies also provide important insight into how theory can be used effectively
727 in the research cycle, particularly for prediction after an initial phase of research has identified
728 relevant theory, and for communicating important concepts with ecologists and with managers,
729 reducing the risk that theory will be applied perversely.

730

731 **CONCLUSIONS**

732 To make faster progress in applied ecology, three important steps are to: (1) better define the
733 predictive capacity of theory, and therefore better identify appropriate applications by:
734 publishing reviews that define contingent theory, refine rationalized theory and provide support

735 for decision-making; (2) guiding research planning and framing by: encouraging applied
736 ecologists to use a broad checklist approach when planning new research and to use rationalized
737 theory more widely in new and secondary case studies, and; (3) enhance communication among
738 scientists by: developing and updating rationalized theory from which redundant theory has been
739 purged, and for which a set of key-word definitions are developed.

740

741 Implementing these steps effectively will likely require careful management through
742 international collaboration. A collaboration for ecological theory could draw on many of the
743 principles and mechanisms of existing international science partnerships, including those of the
744 Centre for Environmental Evidence and the International Nucleotide Sequence Database
745 Collaboration. A co-operative institution built around a number of existing respected scientific
746 organizations could make rationalized theory, definitions and checklists for research planning
747 widely available, which is an essential component of limiting redundancy, improving
748 communication, and providing a tool to support boundary-spanning actions.

749

750 By implementing these three steps, research progress will be accelerated through increased
751 capacity to discover contingent theory, through routine use of a broad conceptual scope in
752 research planning and framing, and by access to improved tools for communication among
753 ecologists. With these improvements in prediction, research framing and communication,
754 ecologists will have better tools for application in spanning the boundaries between ecologists,
755 managers and policy makers.

756

757 Many of the approaches that we have advocated are likely to be beneficial in fields outside of
758 applied ecology. Redundant theory and terminology is likely problematic across all disciplines
759 (e.g. occupational health: Gronqvist et al. 2001, social sciences: Bentrupperbaumer 2006,
760 medicine: Makoul and Clayman 2006, nursing: Mantzoukas and Watkinson 2007, engineering:
761 White 2007, psychology: Cherniss 2010, geology: Ramsey 2010). Most fields are therefore
762 likely to benefit from establishing both collaborative centralized coordination and dissemination
763 of rationalized theory and terminology.

764

765 Removing the impediments to research progress that are embedded in the way applied ecologists
766 currently use theory is now very important because these limitations abet inappropriate
767 application of theory in conservation. We think that the framework we have presented would
768 help to avoid management mistakes and increase the capacity of ecologists to rise to the
769 challenges of biodiversity conservation in the face of global change.

770

771 **ACKNOWLEDGEMENTS**

772 Joern Fischer, Andrew Pullin and Mike Austin provided insightful comments on an earlier draft
773 of this paper which led to substantial improvements. We also thank Aaron Ellison for his
774 valuable suggestions, particularly his encouragement to challenge our ideas using worked
775 examples. Detailed suggestions provided by reviewers were gratefully received and improved the
776 clarity of the paper. DD was supported by the Applied Environmental Decision Analysis
777 (AEDA) Commonwealth Environment Research Facility (CERF), Land and Water Australia and
778 the Kendall Foundation.

779

780 **LITERATURE CITED**

781 Akcakaya, H. R., V. C. Radeloff, D. J. Mladenoff, and H. S. He. 2004. Integrating landscape
782 and metapopulation modeling approaches: Viability of the sharp-tailed grouse in a
783 dynamic landscape. *Conservation Biology* **18**:526-537.

784 Allen, T. F. H., and T. B. Starr. 1988. Hierarchy: perspectives for ecological complexity. The
785 University of Chicago Press, Chicago.

786 Ashton, D. H. 2000. The Big Ash Forest, Wallaby Creek, Victoria - changes during one lifetime.
787 *Australian Journal of Botany* **48**:1-26.

788 Austin, M. P. 1999a. The potential contribution of vegetation ecology to biodiversity research.
789 *Ecography* **22**:465-484.

790 Austin, M. P. 1999b. A silent clash of paradigms: some inconsistencies in community ecology.
791 *Oikos* **86**:170-178.

792 Ayres, E. 2000. The four spikes. *Futures* **32**:539-554.

793 Banks, S., E. Knight, L. McBurney, and D. L. Blair, DB. 2011a. The effects of wildfire on
794 mortality and resources for an arboreal marsupial: resilience to fire events but
795 susceptibility to fire regime change. *PLoS Biology* **6**:e22952.
796 doi:22910.21371/journal.pone.0022952.

797 Banks, S. C., M. Dujardin, L. McBurney, D. Blair, M. Barker, and D. B. Lindenmayer. 2011b.
798 Starting points for small mammal population recovery after wildfire: recolonization, refugia or
799 residual populations? *Oikos* **120**:26-37.

800 Banks, S. C., D. B. Lindenmayer, L. McBurney, D. Blair, E. J. Knight, and M. D. J. Blyton.
801 2011c. Kin selection in den sharing develops under limited availability of tree hollows for
802 a forest marsupial. *Proceedings of the Royal Society B: Biological Sciences*.

803 Batary, P., and A. Baldi. 2004. Evidence of an edge effect on avian nest success. *Conservation*
804 *Biology* **18**:389-400.

805 Belovsky, G. E., D. Botkin, T. Crowl, K. Cummins, J. Franklin, M. Hunter, A. Joern, D.
806 Lindenmayer, J. MacMahon, C. Margules, and J. Scott. 2004. Ten suggestions to
807 strengthen the science of ecology. *Bioscience* **54**:345-351.

808 Bentzupperbaumer, J. M. 2006. Uses, meanings, and understandings of values in the
809 environmental and protected area arena: A consideration of "world heritage" values.
810 *Society & Natural Resources* **19**:723-741.

811 Bero, L., and D. Rennie. 1995. The Cochrane collaboration - preparing, maintaining, and
812 disseminating systematic reviews of the effects of health-care. *Jama-Journal of the*
813 *American Medical Association* **274**:1935-1938.

814 Brown, J. H., and A. Kodric-Brown. 1977. Turnover rates in insular biogeography: effect of
815 immigration on extinction. *Ecology* **58**:445-449.

816 Butchart, S. H. M., M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A.
817 Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr,
818 J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli,
819 J. N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J. F. Lamarque, F.
820 Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E.
821 Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D.
822 Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J. C. Vie, and R.
823 Watson. 2010. Global Biodiversity: Indicators of Recent Declines. *Science* **328**:1164-
824 1168.

825 Calow, P., P. Armitage, P. Boon, P. Chave, E. Cox, A. Hildrew, M. Learner, L. Maltby, G.

826 Morris, J. Seager, and B. Whitton. 1990. River water quality. *Ecological Issues* **1**:1-43.

827 Cash, D. W., W. C. Clark, F. Alcock, N. M. Dickson, N. Eckley, D. H. Guston, J. Jager, and R.

828 B. Mitchell. 2003. Knowledge systems for sustainable development. *Proceedings of the*

829 *National Academy of Sciences of the United States of America* **100**:8086-8091.

830 Caughley, G. 1994. Directions in conservation biology. *Journal of Animal Ecology* **63**:215-244.

831 CEE. 2010. Annual report 2010. Stories of engagement. Collaboration for Environmental

832 Evidence. www.environmentalevidence.org, UK.

833 Cherniss, C. 2010. Emotional Intelligence: Toward Clarification of a Concept. *Industrial and*

834 *Organizational Psychology-Perspectives on Science and Practice* **3**:110-126.

835 Cochrane, G., I. Karsch-Mizrachi, and Y. Nakamura. 2011. The International Nucleotide

836 Sequence Database Collaboration. *Nucleic Acids Research* **39**:D15-D18.

837 Cole, B. J. 1983. Assembly of mangrove ant communities: patterns of geographical distribution.

838 *Journal of Animal Ecology* **52**:339-347.

839 Connell, J. H., and R. O. Slatyer. 1977. Mechanisms of succession in natural communities and

840 their role in community stability and organization. *American Naturalist* **111**:1119–1144.

841 Corry, R. C., and J. I. Nassauer. 2005. Limitations of using landscape pattern indices to evaluate

842 the ecological consequences of alternative plans and designs. *Landscape and Urban*

843 *Planning* **72**:265-280.

844 Cumming, G. S. 2007. Global biodiversity scenarios and landscape ecology. *Landscape Ecology*

845 **22**:671-685.

846 Cummings, J., P. Peeters, S. Dovers, L. Tasker, and D. A. Driscoll. 2010. The worlds of ecology

847 and environmental policy: never the two shall meet? 2009 *ESA Science and Policy*

848 Workshop, Shine Dome, Canberra, 4th December 2009. Ecological Management &
849 Restoration **11**:152-156.

850 de Groot, R. S., M. A. Wilson, and R. M. J. Boumans. 2002. A typology for the classification,
851 description and valuation of ecosystem functions, goods and services. Ecological
852 Economics **41**:393-408.

853 Doak, D. F., and L. S. Mills. 1994. A useful role for theory in conservation. Ecology **75**:615-626.

854 Drechsler, M., K. Frank, I. Hanski, R. B. O'Hara, and C. Wissel. 2003. Ranking metapopulation
855 extinction risk: From patterns in data to conservation management decisions. Ecological
856 Applications **13**:990-998.

857 Driscoll, C. T., K. F. Lambert, and K. C. Weathers. 2011. Integrating Science and Policy: A Case
858 Study of the Hubbard Brook Research Foundation Science Links Program. Bioscience **in**
859 **review**.

860 Driscoll, D. A. 2007. How to find a metapopulation. Canadian Journal of Zoology-
861 Revue Canadienne De Zoologie **85**:1031-1048.

862 Driscoll, D. A. 2008. The frequency of metapopulations, metacommunities and nestedness in a
863 fragmented landscape. Oikos **117**:297-309.

864 Driscoll, D. A., J. B. Kirkpatrick, P. B. McQuillan, and K. Bonham. 2010. Classic
865 metapopulations are rare among beetle species from a naturally fragmented landscape.
866 Journal of Animal Ecology **79**:294-303.

867 Driscoll, D. A., and D. B. Lindenmayer. 2009. An empirical test of metacommunity theory using
868 an isolation gradient. Ecological Monographs **79**:485-501.

869 Driscoll, D. A., and D. B. Lindenmayer. 2010. Assembly rules are rare in SE Australian bird
870 communities, but sometimes apply in fragmented farm landscapes. *Ecography* **33**:854-
871 865.

872 Dunham, J. B., and B. E. Rieman. 1999. Metapopulation structure of bull trout: influences of
873 physical, biotic and geometrical landscape characteristics. *Ecological Applications* **9**:642-
874 655.

875 Edwards, H. J., I. A. Elliott, R. L. Pressey, and P. J. Mumby. 2010. Incorporating ontogenetic
876 dispersal, ecological processes and conservation zoning into reserve design. *Biological
877 Conservation* **143**:457-470.

878 Elton, C. 1927. *Animal ecology*. Sidgewick and Jackson, London.

879 Esler, D. 2000. Applying metapopulation theory to conservation of migratory birds.
880 *Conservation Biology* **14**:366-372.

881 Fahrig, L. 2001. How much habitat is enough? *Biological Conservation* **100**:65-74.

882 Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. *Annual Review of Ecology,
883 Evolution and Systematics* **34**:487-515.

884 Fazey, I., J. A. Fazey, J. G. Salisbury, D. B. Lindenmayer, and S. Dovers. 2006. The nature and
885 role of experiential knowledge for environmental conservation. *Environmental
886 Conservation* **33**:1-10.

887 Fazey, I., J. Fischer, and D. Lindenmayer. 2005. What do conservation biologists publish?
888 *Biological Conservation* **124**:63-73.

889 Fazey, I., J. G. Salisbury, D. B. Lindenmayer, J. Maindonald, and R. Douglas. 2004. Can
890 methods applied in medicine be used to summarize and disseminate conservation
891 research? *Environmental Conservation* **31**:190-198.

892 Fischer, J., D. Lindenmayer, S. Barry, and E. Flowers. 2005. Lizard distribution patterns in the
893 Tumut Fragmentation "Natural Experiment" in south-eastern Australia. *Biological
894 Conservation* **123**:301-315.

895 Fischer, J., and D. B. Lindenmayer. 2005. Nestedness in fragmented landscapes: a case study on
896 birds, arboreal marsupials and lizards. *Journal of Biogeography* **32**:1737-1750.

897 Fischer, J., and D. B. Lindenmayer. 2006. Beyond fragmentation: the continuum model for fauna
898 research and conservation in human-modified landscapes. *Oikos* **112**:473-480.

899 Fischer, J., D. B. Lindenmayer, S. P. Blomberg, R. Montague-Drake, A. Felton, and J. A. Stein.
900 2007. Functional richness and relative resilience of bird communities in regions with
901 different land use intensities. *Ecosystems* **10**:964-974.

902 Ford, E. D. 2000. Scientific method for ecological research. Cambridge University Press,
903 Cambridge, UK.

904 Franklin, J. F. 1993. Preserving biodiversity - species, ecosystems, or landscapes. *Ecological
905 Applications* **3**:202-205.

906 Franklin, J. F., D. B. Lindenmayer, J. A. MacMahon, A. McKee, J. Magnusson, D. A. Perry, R.
907 Waide, and D. R. Foster. 2000. Threads of continuity: ecosystem disturbances, biological
908 legacies and ecosystem recovery. *Conservation Biology in Practice* **1**:8-16.

909 Franklin, J. F., T. A. Spies, R. Van Pelt, A. B. Carey, D. A. Thornburgh, D. R. Berg, D. B.
910 Lindenmayer, M. E. Harmon, W. S. Keeton, D. C. Shaw, K. Bible, and J. Q. Chen. 2002.
911 Disturbances and structural development of natural forest ecosystems with silvicultural
912 implications, using Douglas-fir forests as an example. *Forest Ecology and Management*
913 **155**:399-423.

914 Gibbons, P., R. B. Cunningham, and D. B. Lindenmayer. 2008a. What factors influence the
915 collapse of trees retained on logged sites? A case-control study. *Forest Ecology and
916 Management* **255**:62-67.

917 Gibbons, P., C. Zammit, K. Youngentob, H. P. Possingham, D. B. Lindenmayer, S. Bekessy, M.
918 Burgman, M. Colyvan, M. Considine, A. Felton, R. J. Hobbs, K. Hurley, C. McAlpine,
919 M. A. McCarthy, J. Moore, D. Robinson, D. Salt, and B. Wintle. 2008b. Some practical
920 suggestions for improving engagement between researchers and policy-makers in natural
921 resource management. *Ecological Management & Restoration* **9**:182-186.

922 Grimm, V., and C. Wissel. 1997. Babel, or the ecological stability discussions: An inventory and
923 analysis of terminology and a guide for avoiding confusion. *Oecologia* **109**:323-334.

924 Groffman, P. M., C. Stylinski, M. C. Nisbet, C. M. Duarte, R. Jordan, A. Burgin, M. A. Previtali,
925 and J. Coloso. 2010. Restarting the conversation: challenges at the interface between
926 ecology and society. *Frontiers in Ecology and the Environment* **8**:284-291.

927 Gronqvist, R., W. R. Chang, T. K. Courtney, T. B. Leamon, M. S. Redfern, and L. Strandberg.
928 2001. Measurement of slipperiness: Fundamental concepts and definitions. *Ergonomics*
929 **44**:1102-1117.

930 Guisan, A., and W. Thuiller. 2005. Predicting species distribution: offering more than simple
931 habitat models. *Ecology Letters* **8**:993-1009.

932 Guston, D. H. 1999. Stabilizing the Boundary between US Politics and Science: The Role of the
933 Office of Technology Transfer as a Boundary Organization. *Social Studies of Science*
934 **29**:87-111.

935 Haila, Y. 2002. A conceptual genealogy of fragmentation research: from island biogeography to
936 landscape ecology. *Ecological Applications* **12**:321-334.

937 Hall, L. S., P. R. Krausman, and M. L. Morrison. 1997. The habitat concept and a plea for
938 standard terminology. *Wildlife Society Bulletin* **25**:173-182.

939 Hanski, I. 1999. *Metapopulation Ecology*. Oxford University Press, Oxford.

940 Hanski, I., and O. E. Gaggiotti. 2004. Metapopulation biology: past, present, and future. Pages 3-
941 22 *in* I. Hanski and O. E. Gaggiotti, editors. *Ecology, genetics, and evolution of*
942 *metapopulations*. Elsevier Academic Press, Burlington USA.

943 Hanski, I., A. Moilanen, T. Pakkala, and M. Kuussaari. 1996. The quantitative incidence
944 function model and persistence of an endangered butterfly metapopulation. *Conservation*
945 *Biology* **10**:578-590.

946 Harrison, S. 1991. Local extinction in a metapopulation context: an empirical evaluation.
947 *Biological Journal of the Linnean Society* **42**:73-88.

948 Harrison, S. 1994. Metapopulations and conservation. Pages 111-128 *in* P. J. Edwards, R. May,
949 and N. R. Webb, editors. *Large scale ecology and conservation biology*. The 35th
950 symposium of the British Ecological Society with the Society for Conservation Biology.
951 University of South Hampton, 1993. Blackwell Scientific Publications, Oxford.

952 Harrison, S., and E. Bruna. 1999. Habitat fragmentation and large-scale conservation: what do
953 we know for sure? *Ecography* **22**:225-232.

954 Harrison, S., and A. D. Taylor. 1997. Empirical evidence for metapopulation dynamics. Pages
955 27-42 *in* I. A. Hanski and M. E. Gilpin, editors. *Metapopulation Biology*. *Ecology,*
956 *genetics and evolution*. Academic Press, San Diego.

957 Hausmann, F., C. P. Catterall, and S. D. Piper. 2005. Effects of edge habitat and nest
958 characteristics on depredation of artificial nests in fragmented Australian tropical
959 rainforest. *Biodiversity and Conservation* **14**:2331-2345.

960 Heink, U., and I. Kowarik. 2010. What are indicators? On the definition of indicators in ecology
961 and environmental planning. *Ecological Indicators* **10**:584-593.

962 Helms, J. A. 1998. The dictionary of forestry. Society of American Foresters, Bethesda,
963 Maryland.

964 Hersperger, A. M. 2006. Spatial adjacencies and interactions: Neighborhood mosaics for
965 landscape ecological planning. *Landscape and Urban Planning* **77**:227-239.

966 Hill, J. K., C. D. Thomas, and O. T. Lewis. 1996. Effects of habitat patch size and isolation on
967 dispersal by *Hesperia comma* butterflies: implications for metapopulation structure.
968 *Journal of Animal Ecology* **65**:725-735.

969 Hodges, K. E. 2008. Defining the problem: terminology and progress in ecology. *Frontiers in
970 Ecology and the Environment* **6**:35-42.

971 Hokit, D. G., B. M. Stith, and L. C. Branch. 1999. Effects of landscape structure in florida scrub:
972 a population perspective. *Ecological Applications* **9**:124-134.

973 Hone, J., R. P. Duncan, and D. M. Forsyth. 2010. Estimates of maximum annual population
974 growth rates (r_m) of mammals and their application in wildlife management. *Journal of
975 Applied Ecology* **47**:507-514.

976 Horn, H. S., and R. H. Mac Arthur. 1972. Competition among fugitive species in a harlequin
977 environment. *Ecology* **53**:749-&.

978 Huston, M. 1979. General hypothesis of species-diversity. *American Naturalist* **113**:81-101.

979 Hutchinson, G. E. 1951. Copepodology for the ornithologist. *Ecology* **32**:571-577.

980 Janse, G. 2008. Communication between forest scientists and forest policy-makers in Europe - A
981 survey on both sides of the science/policy interface. *Forest Policy and Economics*
982 **10**:183-194.

983 Jasanooff, S. S. 1987. Contested boundaries in policy-relevant science. *Social Studies of Science*
984 **17**:195-230.

985 Koh, L. P., R. R. Dunn, N. S. Sodhi, R. K. Colwell, H. C. Proctor, and V. S. Smith. 2004.
986 Species coextinctions and the biodiversity crisis. *Science* **305**:1632-1634.

987 Krohne, D. T. 1997. Dynamics of metapopulations of small mammals. *Journal of Mammalogy*
988 **78**:1014-1026.

989 Lacy, R. C., N. R. Flesness, and U. S. Seal. 1989. Puerto Rican Parrot (*Amazona vittata*)
990 population viability analysis and recommendations. *Captive Breeding Specialist Group*,
991 Apple Valley, Minnesota.

992 Lahti, D. C. 2001. The "edge effect on nest predation" hypothesis after twenty years. *Biological*
993 *Conservation* **99**:365-374.

994 Landres, P. B., J. Verner, and J. W. Thomas. 1988. Ecological uses of vertebrate indicator
995 species - a critique. *Conservation Biology* **2**:316-328.

996 Lawton, J. H. 1999. Are there general laws in ecology? *Oikos* **84**:177-192.

997 Lee, P. C., S. Crites, M. Nietfeld, H. VanNguyen, and J. B. Stelfox. 1997. Characteristics and
998 origins of deadwood material in aspen-dominated boreal forests. *Ecological Applications*
999 **7**:691-701.

1000 Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D.
1001 Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The
1002 metacommunity concept: a framework for multi-scale community ecology. *Ecology*
1003 *Letters* **7**:601-613.

1004 Likens, G. E. 2010. The role of science in decision making: does evidence-based science drive
1005 environmental policy? *Frontiers in Ecology and the Environment* **8**:e1-e9.

1006 Likens, G. E., and F. H. Bormann. 1995. Biogeochemistry of a forested ecosystem. . Springer-
1007 Verlag, New York.

1008 Lindenmayer, D., R. J. Hobbs, R. Montague-Drake, J. Alexandra, A. Bennett, M. Burgman, P.
1009 Cale, A. Calhoun, V. Cramer, P. Cullen, D. Driscoll, L. Fahrig, J. Fischer, J. Franklin, Y.
1010 Haila, M. Hunter, P. Gibbons, S. Lake, G. Luck, C. MacGregor, S. McIntyre, R. Mac
1011 Nally, A. Manning, J. Miller, H. Mooney, R. Noss, H. Possingham, D. Saunders, F.
1012 Schmiegelow, M. Scott, D. Simberloff, T. Sisk, G. Tabor, B. Walker, J. Wiens, J.
1013 Woinarski, and E. Zavaleta. 2008a. A checklist for ecological management of landscapes
1014 for conservation. *Ecology Letters* **11**:78-91.

1015 Lindenmayer, D., and M. A. McCarthy. 2002. Congruence between natural and human forest
1016 disturbance: a case study from Australian montane ash forests. *Forest Ecology and
1017 Management* **155**:319-335.

1018 Lindenmayer, D., J. Wood, L. McBurney, D. Michael, M. Crane, C. MacGregor, R. Montague-
1019 Drake, P. Gibbons, and S. Banks. in press. Cross-sectional versus longitudinal research:
1020 A case study of trees with hollows and marsupials in Australian forests. *Ecological
1021 Monographs*.

1022 Lindenmayer, D. B. 2000. Factors at multiple scales affecting distribution patterns and their
1023 implications for animal conservation - Leadbeater's Possum as a case study. *Biodiversity
1024 and Conservation* **9**:15-35.

1025 Lindenmayer, D. B. 2009a. Large-scale landscape experiments. Lessons from Tumut. *Cambridge
1026 University Press, Cambridge.*

1027 Lindenmayer, D. B. 2009b. Old forest, new perspectives-Insights from the Mountain Ash forests
1028 of the Central Highlands of Victoria, south-eastern Australia. *Forest Ecology and
1029 Management* **258**:357-365.

1030 Lindenmayer, D. B., P. Burton, and J. F. Franklin. 2008b. Salvage Logging and its Ecological
1031 Consequences. Island Press, Washington, D.C.

1032 Lindenmayer, D. B., and R. B. Cunningham. 1997. Patterns of co-occurrence among arboreal
1033 marsupials in the forests of central Victoria, southeastern Australia. *Australian Journal of
1034 Ecology* **22**:340-346.

1035 Lindenmayer, D. B., R. B. Cunningham, and C. F. Donnelly. 1997. Decay and collapse of trees
1036 with hollows in eastern Australian forests: Impacts on arboreal marsupials. *Ecological
1037 Applications* **7**:625-641.

1038 Lindenmayer, D. B., R. B. Cunningham, C. F. Donnelly, and J. F. Franklin. 2000. Structural
1039 features of old-growth Australian montane ash forests. *Forest Ecology and Management*
1040 **134**:189-204.

1041 Lindenmayer, D. B., R. B. Cunningham, C. F. Donnelly, and R. Lesslie. 2002a. On the use of
1042 landscape surrogates as ecological indicators in fragmented forests. *Forest Ecology and
1043 Management* **159**:203-216.

1044 Lindenmayer, D. B., R. B. Cunningham, C. F. Donnelly, H. Nix, and B. D. Lindenmayer. 2002b.
1045 Effects of forest fragmentation on bird assemblages in a novel landscape context.
1046 *Ecological Monographs* **72**:1-18.

1047 Lindenmayer, D. B., R. B. Cunningham, C. MacGregor, M. Crane, D. Michael, J. Fischer, R.
1048 Montague-Drake, A. Felton, and A. Manning. 2008c. Temporal changes in vertebrates

1049 during landscape transformation: a large-scale "natural experiment". Ecological
1050 Monographs **78**:567-590.

1051 Lindenmayer, D. B., R. B. Cunningham, and M. A. McCarthy. 1999a. The conservation of
1052 arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-
1053 eastern Australia. VIII. Landscape analysis of the occurrence of arboreal marsupials.
1054 Biological Conservation **89**:83-92.

1055 Lindenmayer, D. B., R. B. Cunningham, M. L. Pope, and C. F. Donnelly. 1999b. The response of
1056 arboreal marsupials to landscape context: a large-scale fragmentation study. Ecological
1057 Applications **9**:594-611.

1058 Lindenmayer, D. B., R. B. Cunningham, M. T. Tanton, H. A. Nix, and A. P. Smith. 1991. The
1059 conservation of arboreal marsupials in the montane ash forests of the central highlands of
1060 Victoria, south-east Australia .3. The habitat requirements of Leadbeater's possum
1061 *Gymnobelideus leadbeateri* and models of the diversity and abundance of arboreal
1062 marsupials. Biological Conservation **56**:295-315.

1063 Lindenmayer, D. B., R. B. Cunningham, M. T. Tanton, and A. P. Smith. 1990a. The
1064 conservation of arboreal marsupials in the montane ash forests of the central highlands of
1065 Victoria, south east Australia .2. The loss of trees with hollows and its implications for
1066 the conservation of Leadbeaters possum *Gymnobelideus leadbeateri* McCoy
1067 (Marsupialia, Petauridae). Biological Conservation **54**:133-145.

1068 Lindenmayer, D. B., R. B. Cunningham, M. T. Tanton, A. P. Smith, and H. A. Nix. 1990b. The
1069 conservation of arboreal marsupials in the montane ash forests of the central highlands of
1070 Victoria, south-east Australia .1. Factors Influencing the Occupancy of Trees with
1071 Hollows. Biological Conservation **54**:111-131.

1072 Lindenmayer, D. B., and J. Fischer. 2006. Habitat Fragmentation and Landscape Change. An
1073 ecological and conservation synthesis. Island Press, Washington, DC.

1074 Lindenmayer, D. B., and J. Fischer. 2007. Tackling the habitat fragmentation panchreston.
1075 Trends in Ecology & Evolution **22**:127-132.

1076 Lindenmayer, D. B., J. Fischer, and R. B. Cunningham. 2005. Native vegetation cover thresholds
1077 associated with species responses. Biological Conservation **124**:311-316.

1078 Lindenmayer, D. B., and J. F. Franklin. 1997. Managing stand structure as part of ecologically
1079 sustainable forest management in Australian mountain ash forests. Conservation Biology
1080 **11**:1053-1068.

1081 Lindenmayer, D. B., J. F. Franklin, P. Angelstam, F. Bunnell, M. J. Brown, S. Dovers, J. E.
1082 Hickey, L. Kremsater, J. Niemelä, D. Norton, D. Perry, and M. Soulé. 2004. The
1083 Victorian forestry round table meeting: a discussion of transitions to sustainability in
1084 Victorian forests. Australian Forestry **67**:1-5.

1085 Lindenmayer, D. B., J. F. Franklin, and J. Fischer. 2006. General management principles and a
1086 checklist of strategies to guide forest biodiversity conservation. Biological Conservation
1087 **131**:433-445.

1088 Lindenmayer, D. B., E. Knight, L. McBurney, D. Michael, and S. C. Banks. 2010. Small
1089 mammals and retention islands: An experimental study of animal response to alternative
1090 logging practices. Forest Ecology and Management **260**:2070-2078.

1091 Lindenmayer, D. B., and R. C. Lacy. 1995. Metapopulation Viability of Arboreal Marsupials in
1092 Fragmented Old-Growth Forests - Comparison among Species. Ecological Applications
1093 **5**:183-199.

1094 Lindenmayer, D. B., and G. E. Likens. 2009. Adaptive monitoring: a new paradigm for long-
1095 term research and monitoring. *Trends in Ecology & Evolution* **24**:482-486.

1096 Lindenmayer, D. B., and G. E. Likens. 2011. Direct measurement versus surrogate indicator
1097 species for evaluating environmental change and biodiversity loss. *Ecosystems* **14**:47-59.

1098 Lindenmayer, D. B., and M. A. McCarthy. 2006. Evaluation of PVA models of arboreal
1099 marsupials: Coupling models with long-term monitoring data. *Biodiversity and*
1100 *Conservation* **15**:4079-4096.

1101 Lindenmayer, D. B., M. A. McCarthy, and M. L. Pope. 1999c. Arboreal marsupial incidence in
1102 eucalypt patches in south-eastern Australia: a test of Hanksi's incidence function
1103 metapopulation model for patch occupancy. *Oikos* **84**:99-109.

1104 Lindenmayer, D. B., M. A. McCarthy, H. P. Possingham, and S. Legge. 2001. A simple
1105 landscape-scale test of a spatially explicit population model: patch occupancy in
1106 fragmented south-eastern Australian forests. *Oikos* **92**:445-458.

1107 Lindenmayer, D. B., and R. F. Noss. 2006. Salvage logging, ecosystem processes, and
1108 biodiversity conservation. *Conservation Biology* **20**:949-958.

1109 Lindenmayer, D. B., and K. Ough. 2006. Salvage logging in the montane ash eucalypt forests of
1110 the Central Highlands of Victoria and its potential impacts on biodiversity. *Conservation*
1111 *Biology* **20**:1005-1015.

1112 Lindenmayer, D. B., and H. P. Possingham. 1995a. The conservation of arboreal marsupials in
1113 the montane ash forests of the central highlands of Victoria, south-east Australia. 7.
1114 Modeling the Persistence of Leadbeaters Possum in Response to Modified Timber
1115 Harvesting Practices. *Biological Conservation* **73**:239-257.

1116 Lindenmayer, D. B., and H. P. Possingham. 1995b. The risk of extinction: ranking management
1117 options for Leadbeater's possum using population viability analysis. Australian National
1118 University, Canberra, Australia.

1119 Lindenmayer, D. B., and H. P. Possingham. 1996. Ranking conservation and timber management
1120 options for leadbeater's possum in southeastern Australia using population viability
1121 analysis. *Conservation Biology* **10**:235-251.

1122 Lindenmayer, D. B., H. P. Possingham, R. C. Lacy, M. A. McCarthy, and M. L. Pope. 2003.
1123 How accurate are population models? Lessons from landscape-scale tests in a fragmented
1124 system. *Ecology Letters* **6**:41-47.

1125 Lindenmayer, D. B., J. T. Wood, R. B. Cunningham, M. Crane, C. Macgregor, D. Michael, and
1126 R. Montague-Drake. 2009. Experimental evidence of the effects of a changed matrix on
1127 conserving biodiversity within patches of native forest in an industrial plantation
1128 landscape. *Landscape Ecology* **24**:1091-1103.

1129 Lindenmayer, D. B., J. T. Wood, R. B. Cunningham, C. MacGregor, M. Crane, D. Michael, R.
1130 Montague-Drake, D. Brown, R. Muntz, and A. M. Gill. 2008d. Testing hypotheses
1131 associated with bird responses to wildfire. *Ecological Applications* **18**:1967-1983.

1132 Lindenmayer, D. B., J. T. Wood, D. Michael, C. MacGregor, R. B. Cunningham, M. Crane, R.
1133 Montague-Drake, D. Brown, R. Muntz, A. M. Gill, and D. A. Driscoll. 2008e. How
1134 predictable are reptile responses to wildfire? *Oikos* **117**:1086-1097.

1135 Lo, D., S.-C. Khoo, and L. Wong. 2009. Non-redundant sequential rules-Theory and algorithm.
1136 *Information Systems* **34**:438-453.

1137 MacArthur, R. H., and E. O. Wilson. 1967. *The theory of island biogeography*. Princeton
1138 University Press, Princeton.

1139 Mackey, B. G., and D. B. Lindenmayer. 2001. Towards a hierarchical framework for modelling
1140 the spatial distribution of animals. *Journal of Biogeography* **28**:1147-1166.

1141 Mackey, R. L., and D. J. Currie. 2001. The diversity-disturbance relationship: is it generally
1142 strong and peaked? *Ecology* **82**:3479-3492.

1143 Makoul, G., and M. L. Clayman. 2006. An integrative model of shared decision making in
1144 medical encounters. *Patient Education and Counseling* **60**:301-312.

1145 Mantzoukas, S., and S. Watkinson. 2007. Review of advanced nursing practice: the international
1146 literature and developing the generic features. *Journal of Clinical Nursing* **16**:28-37.

1147 McCarthy, M. A., and D. B. Lindenmayer. 1999. Incorporating metapopulation dynamics of
1148 greater gliders into reserve design in disturbed landscapes. *Ecology* **80**:651-667.

1149 McGill, B. J. 2010. Towards a unification of unified theories of biodiversity. *Ecology Letters*
1150 **13**:627-642.

1151 McNie, E. C. 2007. Reconciling the supply of scientific information with user demands: an
1152 analysis of the problem and review of the literature. *Environmental Science & Policy*
1153 **10**:17-38.

1154 Mouquet, N., and M. Loreau. 2002. Coexistence in metacommunities: The regional similarity
1155 hypothesis. *American Naturalist* **159**:420-426.

1156 Nicholson, E., and H. P. Possingham. 2007. Making conservation decisions under uncertainty for
1157 the persistence of multiple species. *Ecological Applications* **17**:251-265.

1158 Nicholson, E., M. I. Westphal, K. Frank, W. A. Rochester, R. L. Pressey, D. B. Lindenmayer,
1159 and H. P. Possingham. 2006. A new method for conservation planning for the persistence
1160 of multiple species. *Ecology Letters* **9**:1049-1060.

1161 Nisbet, M. C., M. A. Hixon, K. D. Moore, and M. Nelson. 2010. Four cultures: new synergies for
1162 engaging society on climate change. *Frontiers in Ecology and the Environment* **8**:329-
1163 331.

1164 Osmond, D. L., N. M. Nadkarni, C. T. Driscoll, E. Andrews, A. J. Gold, S. R. B. Allred, A. R.
1165 Berkowitz, M. W. Klemens, T. L. Loecke, M. A. McGarry, K. Schwarz, M. L.
1166 Washington, and P. M. Groffman. 2010. The role of interface organizations in science
1167 communication and understanding. *Frontiers in Ecology and the Environment* **8**:306-313.

1168 Pace, M. L., S. E. Hampton, K. E. Limburg, E. M. Bennett, E. M. Cook, A. E. Davis, J. M.
1169 Grove, K. Y. Kaneshiro, S. L. LaDeau, G. E. Likens, D. M. McKnight, D. C. Richardson,
1170 and D. L. Strayer. 2010. Communicating with the public: opportunities and rewards for
1171 individual ecologists. *Frontiers in Ecology and the Environment* **8**:292-298.

1172 Palmer, M. A., R. F. Ambrose, and N. L. Poff. 1997. Ecological theory and community
1173 restoration ecology. *Restoration Ecology* **5**:291-300.

1174 Palomo, I., B. Martin-Lopez, C. Lopez-Santiago, and C. Montes. 2011. Participatory Scenario
1175 Planning for Protected Areas Management under the Ecosystem Services Framework: the
1176 Donana Social-Ecological System in Southwestern Spain. *Ecology and Society* **16**.

1177 Parris, K. M., and D. B. Lindenmayer. 2004. Evidence that creation of a *Pinus radiata* plantation
1178 in south-eastern Australia has reduced habitat for frogs. *Acta Oecologica-International*
1179 *Journal of Ecology* **25**:93-101.

1180 Paton, P. W. C. 1994. The effect of edge on avian nest success - how strong is the evidence.
1181 *Conservation Biology* **8**:17-26.

1182 Peters, R. H. 1991. A critique for ecology. Cambridge University Press, Cambridge.

1183 Peterson, G. D., G. S. Cumming, and S. R. Carpenter. 2003. Scenario planning: a tool for
1184 conservation in an uncertain world. *Conservation Biology* **17**:358-366.

1185 Pickett, S. T. A., J. Kolasa, and C. G. Jones. 1994. *Ecological Understanding*. Academic Press,
1186 San Diego.

1187 Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food
1188 web ecology: the dynamics of spatially subsidized food webs. *Annual Review of Ecology*
1189 and Systematics

28:289-316.

1190 Pouyat, R. V., K. C. Weathers, R. Hauber, G. M. Lovett, A. Bartuska, L. Christenson, J. L. D.
1191 Davis, S. E. G. Findlay, H. Menninger, E. Rosi-Marshall, P. Stine, and N. Lymn. 2010.
1192 The role of federal agencies in the application of scientific knowledge. *Frontiers in*
1193 *Ecology and the Environment* **8**:322-328.

1194 Prendergast, J. R., R. M. Quinn, and J. H. Lawton. 1999. The gaps between theory and practice
1195 in selecting nature reserves. *Conservation Biology* **13**:484-492.

1196 Pulliam, H. R. 1988. Sources, sinks and population regulation. *American Naturalist* **132**:652-661.

1197 Pullin, A. S., and T. M. Knight. 2009. Doing more good than harm - building an evidence-base
1198 for conservation and environmental management. *Biological Conservation* **142**:931-934.

1199 Ramsey, M. H. 2010. How Terminology and Definitions in Analytical Geochemistry can Help or
1200 Hinder the Development of New Ideas. *Geostandards and Geoanalytical Research*
1201 **34**:317-324.

1202 Rand, T. A., J. M. Tylianakis, and T. Tscharntke. 2006. Spillover edge effects: the dispersal of
1203 agriculturally subsidized insect natural enemies into adjacent natural habitats. *Ecology*
1204 *Letters* **9**:603-614.

1205 Ranius, T. 2007. Extinction risks in metapopulations of a beetle inhabiting hollow trees predicted
1206 from time series. *Ecography* **30**:716-726.

1207 Reichmann, O. J. 2004. NCEAS: promoting creative collaborations. *PLoS Biology* **2**:311-312.

1208 Reyers, B., D. J. Roux, R. M. Cowling, A. E. Ginsburg, J. L. Nel, and P. O. Farrell. 2010.
1209 Conservation Planning as a Transdisciplinary Process. *Conservation Biology* **24**:957-965.

1210 Ries, L., R. J. Fletcher, J. Battin, and T. D. Sisk. 2004. Ecological responses to habitat edges:
1211 mechanisms, models, and variability explained. *Annual Review of Ecology Evolution
1212 and Systematics* **35**:491-522.

1213 Risjord, M. 2009. Rethinking concept analysis. *Journal of Advanced Nursing* **65**:684-691.

1214 Roux, D. J., K. H. Rogers, H. C. Biggs, P. J. Ashton, and A. Sergeant. 2006. Bridging the
1215 science-management divide: Moving from unidirectional knowledge transfer to
1216 knowledge interfacing and sharing. *Ecology and Society* **11**.

1217 Russell, E. W. B. 1994. The use of theory in land management decisions - the New-Jersey pine-
1218 barrens. *Biological Conservation* **68**:263-268.

1219 Ryall, K. L., and L. Fahrig. 2006. Response of predators to loss and fragmentation of prey
1220 habitat: a review of theory. *Ecology* **87**:1086-1093.

1221 Salzman, J. 1989. Scientists as Advocates: The Point Reyes Bird Observatory and Gill Netting in
1222 Central California. *Conservation Biology* **3**:170-180.

1223 Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, and J. G.
1224 Bishop. 1994. Evaluating approaches to the conservation of rare and endangered plants.
1225 *Ecology* **75**:584-606.

1226 Schmiegelow, F. K. A., and M. Monkkonen. 2002. Habitat loss and fragmentation in dynamic
1227 landscapes: avian perspectives from the boreal forest. *Ecological Applications* **12**:375-
1228 389.

1229 Schoener, T. W. 1986. Overview: kinds of ecological communities - ecology becomes
1230 pluralistic. Pages 467-479 *in* J. Diamond and T. J. Case, editors. *Community Ecology*.
1231 Harper and Row, New York.

1232 Schulte, L. A., R. J. Mitchell, M. L. Hunter, J. R. Franklin, R. K. McIntyre, and B. J. Palik. 2006.
1233 Evaluating the conceptual tools for forest biodiversity conservation and their
1234 implementation in the US. *Forest Ecology and Management* **232**:1-11.

1235 Shea, K., S. H. Roxburgh, and E. S. J. Rauschert. 2004. Moving from pattern to process:
1236 coexistence mechanisms under intermediate disturbance regimes. *Ecology Letters* **7**:491-
1237 508.

1238 Shmida, A., and S. Ellner. 1984. Coexistence of Plant-Species with Similar Niches. *Vegetatio*
1239 **58**:29-55.

1240 Shmida, A., and M. V. Wilson. 1985. Biological determinants of species diversity *Journal of*
1241 *Biogeography* **12**:1-20.

1242 Shrader-Frechette, K. S., and E. D. McCoy. 1993. *Method in Ecology. Strategies for*
1243 *Conservation*. Cambridge University Press, Cambridge, UK.

1244 Simberloff, D. 1988. The contribution of population and community biology to conservation
1245 science. *Annual Review of Ecology and Systematics* **19**:473-511.

1246 Simberloff, D. 1998. Flagships, umbrellas, and keystones: is single-species management passe in
1247 the landscape era? *Biological Conservation* **83**:247-257.

1248 Simberloff, D. 2004. Community ecology: is it time to move on? *American Naturalist* **163**:787-

1249 799.

1250 Simberloff, D., and M. D. Collins. 2010. Birds of the Solomon Islands; the domain of the

1251 dynamic equilibrium theory and assembly rules, with comments on the taxon cycle.

1252 Pages 237-263 *in* J. B. Losos and R. E. Ricklefs, editors. *The theory of island*

1253 *biogeography revisited*. Princeton University Press, Princeton, NJ.

1254 Simpson, G. G. 1964. Species density of North American recent mammals. *Systematic Zoology*

1255 **13**:57-73.

1256 Sinclair, A. R. E. 1996. Mammal populations: fluctuation, regulation, life history theory and their

1257 implications for conservation. *Frontiers of Population Ecology*:127-154.

1258 Sisk, T. 2007. Incorporating edge effects into landscape design and management. Pages 151-164

1259 *in* B. D. Lindenmayer and R. Hobbs, editors. *Managing and designing landscapes for*

1260 *conservation: moving from perspectives to principles*. Blackwell Publishing, Carlton,

1261 Australia.

1262 Southwood, T. R. E. 1977. Habitat, templet for ecological strategies - Presidential-address to

1263 British-Ecological-Society, 5 January 1977. *Journal of Animal Ecology* **46**:337-365.

1264 Stork, N. E. 2010. Re-assessing current extinction rates. *Biodiversity and Conservation* **19**:357-

1265 371.

1266 Sutherland, W. J., A. S. Pullin, P. M. Dolman, and T. M. Knight. 2004. The need for evidence-

1267 based conservation. *Trends in Ecology & Evolution* **19**:305-308.

1268 Taylor, A. D. 1990. Metapopulations, dispersal, and predator prey dynamics - an overview.

1269 *Ecology* **71**:429-433.

1270 Termorshuizen, J. W., P. Opdam, and A. van den Brink. 2007. Incorporating ecological
1271 sustainability into landscape planning. *Landscape and Urban Planning* **79**:374-384.

1272 Thomas, J. A., C. D. Thomas, D. J. Simcox, and R. T. Clarke. 1986. Ecology and declining
1273 status of the silver-spotted skipper butterfly (*Hesperia comma*) in Britain. *Journal of*
1274 *Applied Ecology* **23**:365-380.

1275 Tubelis, D. P., D. B. Lindenmayer, and A. Cowling. 2007. The peninsula effect on bird species
1276 in native eucalypt forests in a wood production landscape in Australia. *Journal of*
1277 *Zoology* **271**:11-18.

1278 van Kerkhoff, L. 2005. Integrated research: concepts of connection in environmental science and
1279 policy. *Environmental Science & Policy* **8**:452-463.

1280 Vanston, J. H., W. P. Frisbie, S. C. Lopreato, and D. L. Poston. 1977. Alternate scenario
1281 planning. *Technological Forecasting and Social Change* **10**:159-180.

1282 Vitousek, P., J. Aber, R. Howarth, G. Likens, P. Matson, D. Schindler, W. Schlesinger, and G.
1283 Tilman. 1997. Human alteration of the global nitrogen cycle: causes and consequences.
1284 *Issues in Ecology* **1**:1:16.

1285 Warner, R. R., and P. L. Chesson. 1985. Coexistence mediated by recruitment fluctuations - a
1286 field guide to the storage effect. *American Naturalist* **125**:769-787.

1287 White, B. E. 2007. On interpreting scale (or view) and emergence in complex systems
1288 engineering. 1st Annual IEEE Systems Conference. Institute of Electrical and Electronics
1289 Engineers, New York.

1290 Whitmer, A., L. Ogden, J. Lawton, P. Sturmer, P. M. Groffman, L. Schneider, D. Hart, B.
1291 Halpern, W. Schlesinger, S. Raciti, N. Bettez, S. Ortega, L. Rustad, S. T. A. Pickett, and

1292 M. Killelea. 2010. The engaged university: providing a platform for research that
1293 transforms society. *Frontiers in Ecology and the Environment* **8**:314-321.

1294 Wilson, M. H., C. B. Kepler, N. F. R. Snyder, S. R. Derrickson, F. J. Dein, J. W. Wiley, J. M. J.
1295 Wunderle, A. E. Lugo, D. L. Graham, and W. D. Toone. 1994. Puerto Rican parrots and
1296 potential limitations of the metapopulation approach to species conservation.
1297 *Conservation Biology* **8**:114-123.

1298 Wilson, R. J., Z. G. Davies, and C. D. Thomas. 2009. Modelling the effect of habitat
1299 fragmentation on range expansion in a butterfly. *Proceedings of the Royal Society B-*
1300 *Biological Sciences* **276**:1421-1427.

1301 Wilson, R. J., Z. G. Davies, and C. D. Thomas. 2010. Linking habitat use to range expansion
1302 rates in fragmented landscapes: a metapopulation approach. *Ecography* **33**:73-82.

1303 With, K. A. 1997. The theory of conservation biology. *Conservation Biology* **11**:1436-1440.

1304 Woodward, A., K. Jenkins, and E. G. Schreiner. 1999. The role of ecological theory in long-term
1305 monitoring: report on a workshop. *Natural Areas Journal* **19**:223-233.

1306

1307

1308 Table 1. Three important ways that theory should contribute to conservation biology, the reasons
 1309 it often fails to make that contribution, and the changes that would help to resolve those
 1310 problems.

How theory should help	Why theory often fails	Solutions
Predict outcomes of new situations	There are no universal laws and there is a poor understanding of contingencies	Systematic review to clarify application of theory and develop contingent theory
	Theory is applied regardless of these failings, with a risk of perverse outcomes	Improved science-practitioner boundary spanning, combined with other listed solutions
Heuristic value: provide understanding for planning research and posing research questions	Theory has narrow conceptual scope, constraining thought and planning	Avoid use of theory for guiding initial or broad research programs by using a list of phenomena or questions instead (Table 2)
Communicate findings across taxa, regions and biomes using a common set of terms and concepts	Redundant theory isolates researchers and undermines a logical choice of framework	Rationalization of theory through synthetic review of the theory describing a set of phenomena
	Poorly defined terms confuse discussion	Develop authoritative dictionary of key words

1311 Table 2. The heuristic value of many theories used in conservation could be replaced by three
1312 classes of questions; regional and landscape phenomena, abiotic drivers and biotic processes.
1313 These provide a broad conceptual basis for research development in species management and
1314 conservation, ensuring that a broader range of phenomena are considered than when research is
1315 developed within the domain of a particular theory. From this checklist of questions about
1316 phenomena, researchers can develop a conceptual model of their system and use that conceptual
1317 model to formulate focused and relevant research questions (Lindenmayer and Likens 2009).

Phenomena at Regional and Landscape Scales

Regional fluxes. What regional processes influence the species within the focal landscape?

(Region defined as the area surrounding a focal landscape and landscape defined from a management or species perspective. e.g. influx of resources and species from outside the focal landscape.)

Landscape elements. Which parts of a landscape are used by the species and for what purpose?

Are there gradients or patch-matrix patterns of occupancy and are landscape elements used as sources, sinks, or for dispersal or foraging? These questions aim to define aspects of a species' habitat and describe its location in the landscape.

Abiotic Drivers

Environment. Do species respond to environmental gradients or variation across the landscape?

(e.g. temperature, rainfall, nutrients)

Disturbance. How do disturbance regimes influence species abundance and survival? (type of disturbance, frequency, extent, severity, duration (Shea et al. 2004), e.g. climate change, drought, flood, fire, wind, anthropogenic impacts)

Time. What is the appropriate temporal scale for examining ecological responses?

(Considerations include the rates and relative impact on population survival of all other processes)

Biotic Processes

Interactions. To what extent do interactions with other species influence abundance or survival?

(prey, predators, competitors, pollinators, seed dispersers, pathogens, hosts, vegetation structure)

Dispersal. How does dispersal influence abundance and survival of populations? (immigration, emigration, colonization)

Demographics. What are the characteristics and main drivers of population demographics?

(characteristics: population growth, recruitment, survival, population extinction; main drivers: interactions with abiotic and other biotic processes, genetic effects, life history)

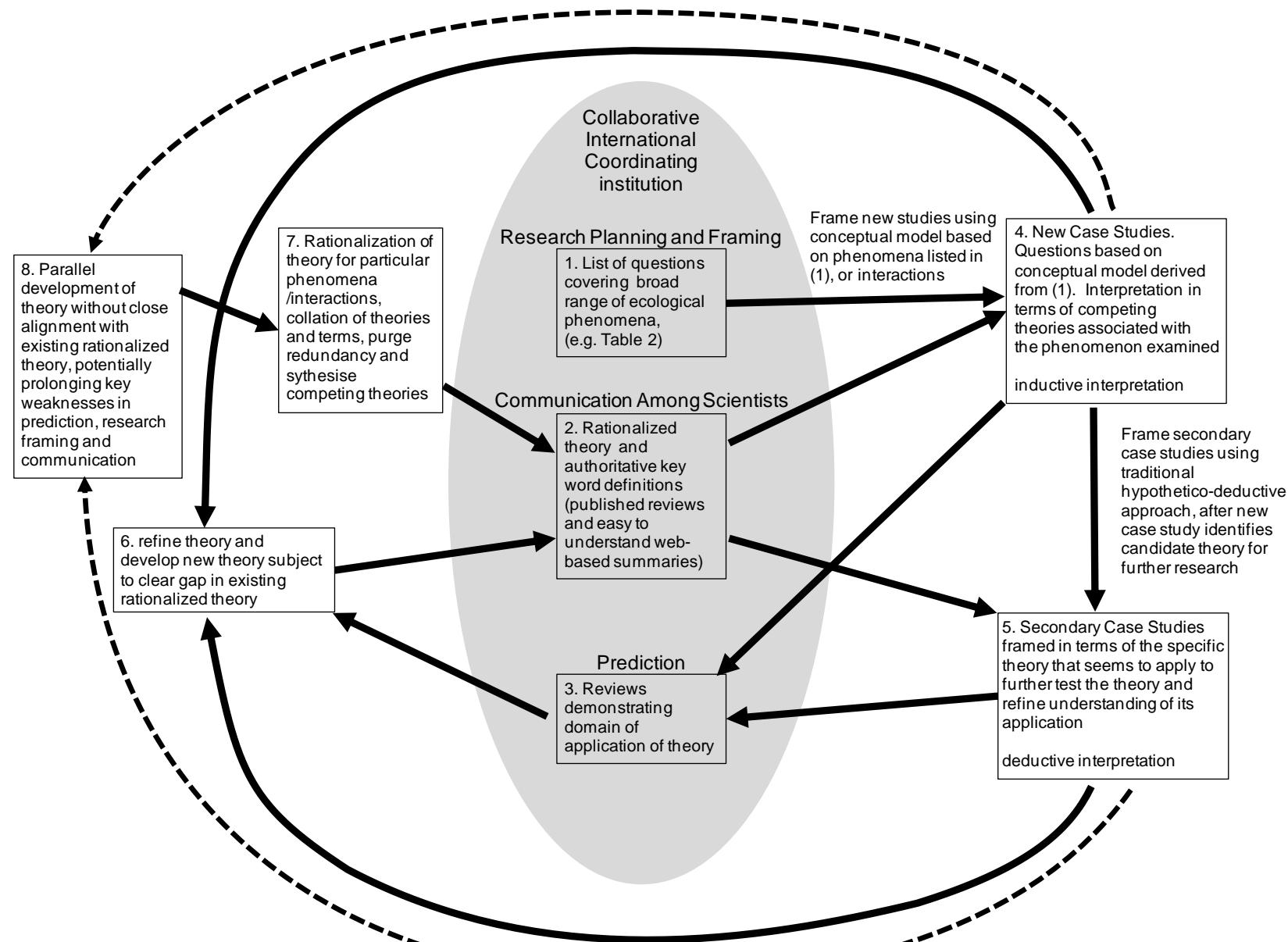
1319 Table 3. Ecological theory that has been tested using the Tumut study system

Theory	Test methods	General findings	Reference
Metapopulation	Tested fit of PVA and incidence function models	Occurrence of some birds and mammals well predicted, others poorly predicted. No general patterns in which kinds of species conform to theoretical assumptions.	(Lindenmayer et al. 2003)
Ecological Thresholds	Incidence under different proportions of vegetation cover	No species exhibited the predicted threshold response because the assumption that vegetation = habitat was not correct.	(Lindenmayer et al. 2005)
Nested Subset	Nestedness in birds, reptiles and possums	Possums and reptiles were not nested, and birds were imperfectly nested due to occurrence in the matrix, and effects of temperature gradients for reptiles.	(Fischer and Lindenmayer 2005)

1320

1321

Metacommunity	Rare species and community changes across an isolation gradient	Competing metacommunity concepts act ephemerally, sometimes simultaneously, and effects vary with species and region.	(Driscoll and Lindenmayer 2009)
Peninsula effect (derived from island biogeography)	Measure abundance along narrow eucalypt remnants	Only tested with birds, and found decreasing species richness with distance along peninsulas as predicted by theory	(Tubelis et al. 2007)
Ecological resilience	Compared resilience statistics in landscapes with different land-use intensification	Predictions that Tumut fragments should show lower resilience measures for bird communities than Tumut controls were not observed.	(Fischer et al. 2007)
Assembly Rules	Tested for positive and negative relationships among bird species after taking into account vegetation differences	Almost no evidence of negative interactions at Tumut, and effects ephemeral. Assembly rules had no predictive value.	(Driscoll and Lindenmayer 2010)


1322

1323

1324 Table 4. Ecological theory that has been tested using the Victorian wet forest study system

Theory	Test methods	General findings	Reference
Surrogates and Indicators	Indices of proximity to settlement, intensity of land use, other arboreal marsupials as biodiversity surrogates	No relationship between surrogate and occurrence of possum species	(Lindenmayer and Cunningham 1997, Lindenmayer et al. 2002a)
Ecological resilience	Compared resilience statistics in landscapes with different land-use intensification	Incorrectly predicted higher resilience than a randomly assembled community in the wet forest system	(Fischer et al. 2007)
Assembly Rules	Tested for positive and negative relationships among bird species after taking into account vegetation differences	No negative interactions between bird species were observed in wet forests. Assembly rules had no predictive value.	(Driscoll and Lindenmayer 2010)
Metapopulation	Applied in a series of studies, not explicitly tested.	New empirical research showed that patch-matrix assumptions applied to one possum species, but not three others, or most bird species.	(Lindenmayer and Lacy 1995, Lindenmayer and Possingham 1995a, Lindenmayer et al. 1999a, McCarthy and Lindenmayer 1999, Lindenmayer 2009b)

1326 Figure 1. Conceptual model of how solutions to the three key areas in which theory often fails
1327 can be incorporated into research. An international coordinating institution (grey oval)
1328 provides an authoritative central repository and access point for three classes of
1329 information: (1) a list of questions describing phenomena that are important to consider in
1330 developing and framing research (e.g. our Table 2), (2) peer-reviewed rationalized theory
1331 and definitions of key words that facilitate better communication among scientists, and (3)
1332 systematic reviews that develop contingent theory with the potential for prediction. New
1333 case studies (4) use a conceptual framework based on the list of questions (2) for framing
1334 and planning to avoid using particular theories with narrow heuristic scope. New case
1335 studies are interpreted and relevant theories identified using an inductive approach, then
1336 theories are further tested in secondary case studies (5) using a hypothetico-deductive
1337 approach. New case studies, secondary case studies and systematic reviews of theory may
1338 provide new insight that refines theory or requires development of new theory (6).
1339 Rationalized theory may thereby be updated, possibly through a peer-review process
1340 within the coordinating institution, ensuring that the most comprehensive theoretical
1341 frameworks are readily accessible. The systematic rationalization of theory (7) plays the
1342 dual role of setting up the frameworks for using theory throughout the research cycle, and
1343 of enabling periodic review of the theory describing particular phenomena in addition to
1344 the gradual refinement that might arise through (6). If new research does not refer to
1345 rationalized theory, or in fields where rationalized theory has not been published, the
1346 ongoing parallel development of theory is likely (dashed lines, 8), providing new
1347 motivation and source material for additional syntheses to rationalize theory (7).

