

1 **Authors:** N. SWEANEY¹, D. B. LINDENMAYER¹ and D. A. DRISCOLL^{2*},

2 **Title:** Movement across woodland edges suggests plantations and farmland are barriers to
3 dispersal

4

5 ¹ Fenner School of Environment and Society, The Australian National University, Canberra,
6 ACT, 0200, Australia

7 2. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin
8 University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125,
9 Australia.

10

11 * Corresponding author: d.driscoll@deakin.edu.au, +61 3 9251 7609

12 ORCID

13 DBL: 0000-0002-4766-4088

14 DAD: 0000-0002-1560-5235

15

16

17 ABSTRACT

18 *Context.* The behavioural response of animals to edges between habitat patches and the matrix
19 can influence population dynamics and species persistence in fragmented landscapes.

20 *Objectives.* We aimed to answer two questions: (1) How do edge-effects between three land-
21 cover types affect movement of adult male butterflies, and; (2) is response to edges influenced by
22 perceptual range?

23 *Methods.* In south-eastern Australia, we visually tracked the flight behaviour of the butterfly
24 *Heteronympha merope* at edges between three land-cover types: native eucalypt woodland,
25 farmland and exotic pine plantation. Using six replicates of each edge type, we released animals
26 on both sides of the edges, and at two distances from the edge (5 m and 30 m).

27 *Results.* Butterflies avoided pine edges, appeared to have low perceptual range in pines, and
28 when released in pines, departed quickly. Butterflies often crossed from farmland into woodland
29 and stayed, whereas none crossed from woodland into farmland or pines and stayed. Butterflies
30 moved further away from pine edges when they were in woodland than when they were in
31 farmland, suggesting edge-effects of one land-cover type depend on how animals respond to the
32 alternative land-cover.

33 *Conclusions.* Avoidance, and low perceptual range in plantations suggests plantations reduce
34 landscape connectivity. Limited use of farmland is consistent with global reports that
35 intensification of agriculture contributes to insect declines. Resource requirements of butterflies
36 overlap with many other insects, and so extensive forestry plantations and intensive agriculture
37 likely have negative impacts on a range of taxa, with improved land-sharing a possible solution.

38

39 **Keywords** Agriculture; edge-effects; fence effect; habitat fragmentation and loss; landscape
40 ecology; boundary behaviour.

41

42 **Introduction**

43 In landscapes that are extensively cleared and fragmented for agriculture (Mony et al. 2018) or
44 tree plantations (Liu et al. 2020), movement of individuals between subpopulations can have an
45 important influence on population dynamics and species persistence (Crooks et al. 2017; Thomas
46 2000). Movement between remnant patches can reduce the risk of local extinction through rescue
47 effects (Brown and Kodric-Brown 1977), by avoiding genetic deterioration (Lynch et al. 1995),
48 and by enabling metapopulation dynamics (Hanski 1998). However, such movement depends
49 substantially on the nature of the matrix which is defined as the predominantly human-modified
50 non-habitat that surrounds remnants (Driscoll et al. 2013). Different matrix types can have a
51 strong influence on how species respond to landscape connectivity (Kormann et al. 2019). How
52 animals complete departure, transfer, and settlement from patch, through the matrix to a new
53 habitat (Bonte et al. 2012; Clobert et al. 2009) is therefore critical for population dynamics in
54 fragmented landscapes.

55 Successful movement through fragmented landscapes depends on the detection of edges between
56 different land cover types and the subsequent behavioural response leading to edge avoidance or
57 entry into a different cover type (boundary behaviour, Chapman et al. 2007; Kuefeler et al. 2010).
58 Movement is often modelled as a single parameter, however in reality, it is usually condition-
59 dependent (Bowler and Benton 2005; Ricketts 2001). For example, in Spanish dune-scrub
60 mosaics, the butterfly *Plebejus argus* would rapidly cross boundaries into high quality patches,
61 but would spend time exploring edges of low quality areas and often did not cross into lower
62 quality vegetation (Fernandez et al. 2016). As remnant patches are commonly embedded in
63 landscapes with multiple land-cover types (e.g. Öckinger et al. 2012; Ricketts 2001),

64 comparisons of behavioural responses to edges of different types are needed to understand the
65 boundary aspects of animal dispersal (Brown et al. 2017; Hansen et al. 2020).

66 Whether species depart through habitat edges will, in part, depend on their perceptual range
67 (Fletcher et al. 2013). Species can choose to move towards or away from edges, only if they are
68 close enough to sense them. For example, when rainforest patches were more than 80 m apart,
69 separated by an agricultural matrix, the rainforest bird *Pyriglena leucoptera* used longer routes
70 and had a higher risk of mortality because they could not detect distant patches (Awade et al.
71 2017). A limited perceptual range means that individuals cannot make informed decisions about
72 habitat edges and this has flow on effects for connectivity (Pe'er and Kramer-Schadt 2008) and
73 population structure (Grant et al. 2018).

74 Limited perceptual range may be a particularly important factor in butterfly dispersal because
75 many butterfly species have perceptual ranges of just a few meters to tens of meters (Conradt et
76 al. 2000; MacDonald et al. 2019; Schtickzelle et al. 2007; Schultz and Crone 2001), and this can
77 make them vulnerable to effects of habitat fragmentation (Dover and Settele 2009). Moreover,
78 butterflies and other insects have suffered major declines in some parts of the world, primarily as
79 a result of land use change (Sanchez-Bayo and Wyckhuys 2019; Wagner et al. 2021; Warren et
80 al. 2021). Understanding potential mechanisms affecting insect survival in fragmented
81 landscapes may therefore contribute to broader knowledge about these concerning declines
82 (Schultz et al. 2019).

83 In this study, we focus on movement responses to habitat edges of the Common Brown butterfly
84 *Heteronympha merope* in a landscape of remnant woodland patches, cleared grazing land, and
85 pine plantations in south-eastern Australia. *Heteronympha merope* is usually associated with

86 eucalypt woodlands (Braby 2005), but can occur in farmland and is generally absent from pine
87 plantations (Sweaney 2014). Furthermore, *H. merope* reaches highest abundance in woodland
88 patches partially or fully embedded in pine plantations compared to patches on farmland
89 (Sweaney 2014). The mechanisms that drive these responses, however, have not yet been
90 directly investigated, but could be related to 'fence effects' (Krebs et al. 1969; Ostfeld 1994) if
91 pines are a barrier to movement out of patches.

92 In this study, we asked: How do edge-effects between the three land-cover types affect
93 movement of adult male butterflies? We also investigated possible influences of perceptual range
94 by releasing butterflies at 5 m and 30 m from boundaries. We hypothesised that: (i) individuals
95 would move towards, or remain in, preferred woodland habitat (Delattre et al. 2010; Villemey et
96 al. 2016), and (ii) responses to edges would be weakened if individuals were at the limit of their
97 perceptual range.

98 Understanding movement within, and at the edges of, different habitats should lead to better
99 generalisations and predictions concerning species conservation and successful land management
100 (Driscoll et al. 2013; Ross et al. 2005). Our research is particularly relevant as plantations and
101 planted forest occupy huge areas of land (294 M ha globally), and continue to expand (Crawford
102 et al. 2016; FAO 2020; McEwan et al. 2020) while agriculture continues to intensify (Garcia et
103 al. 2020). This study also has wider implications for other taxa associated with open woodland
104 habitats or those faced with increasing land use change, as they may respond to landscape
105 transformation in similar ways to our focal species (Scriven et al. 2017; van Halder et al. 2008;
106 Villemey et al. 2016).

107

108 **Methods**

109 We address our research questions by releasing butterflies and monitoring subsequent flight
110 behaviour at two different distances on either side of three different edge types in a landscape
111 mosaic of pines, native eucalypt woodland and cleared grazing land.

112 **Study area**

113 Nanangroe, in SE Australia (Fig. 1, Lindenmayer et al. 2001), historically consisted of extensive
114 stands of open *Eucalyptus* woodlands, 85% of which have been cleared for agriculture over the
115 past 170 years (Lindenmayer et al. 2008). Beginning in 1998, extensive areas of land were
116 converted to pine plantations. The remaining *Eucalyptus* woodlands consist of relatively small
117 fragments (most <5ha), surrounded by a matrix of either agricultural pastures or dense pine
118 plantations (Fig. 1).

119 The agricultural land use at Nanangroe is predominantly grazing by livestock, with some
120 cropping, fertiliser and pesticide use. Pine plantations are thinned every 12-15 years and clear-
121 felled after 25 years (Lindenmayer et al. 2008). At the time of our study, the pine plantation was
122 mature (>12 years old) and densely stocked; the ground cover of all plantation sites was
123 comprised exclusively of fallen pine needles. The remnant grassy woodlands are a threatened
124 ecological community and were dominated by yellow box (*Eucalyptus melliodora*), white box
125 (*Eucalyptus albens*) and Blakely's red gum (*Eucalyptus blakelyi*). The understorey in remnant
126 sites was simple; mostly comprised of short native and exotic grasses. All woodland patches
127 used in our study were <5 ha in size, separated by areas of matrix, with distinct edges (Fig. 1).

128 Study species

129 *Heteronympha merope* is endemic to Australia, and occupies a wide range of habitats, preferring
130 open grassy *Eucalyptus* woodlands (Orr and Kitching 2010). At Nanangroe, *H. merope* is most
131 commonly found in woodland, also occurs on farmland, but not in pine plantations (Sweeney
132 2014). *Heteronympha merope* feeds on nectar, fermenting fruit, and gum from trees (Braby
133 2005). Sexual dimorphism is marked in this species (Braby 2005). Both sexes emerge in spring
134 to mate (Orr and Kitching 2010). Males are active over summer and die off with the cooler
135 Autumn weather (Edwards 1973). Females aestivate over summer, delaying egg production until
136 cooler weather and rainfall encourages grass growth, which provides resources for caterpillars
137 (Braby 2005). Females lay eggs on leaves of host plants, which include numerous species of
138 common native and exotic grasses on which the caterpillars feed (Orr and Kitching 2010).
139 Female *H. merope* die with the onset of winter.

140 Field experiment

141 We completed our experiment in February 2012 (Australian summer) using male butterflies. At
142 this time of year, *H. merope* individuals had completed mating and females were dormant (Braby
143 2005; Edwards 1973), meaning that male movement was driven by resource needs rather than
144 mate-finding (which may encourage more movement than usual, Kingsolver 1983). We
145 conducted our release experiments at 18 sites comprising three different edge combinations; 1)
146 six eucalypt woodland fragments adjacent to farmland, 2) six eucalypt woodland fragments
147 adjacent to pine plantation, and 3) six pine plantation sites adjacent to farmland (Fig. 1).
148 At each site, we completed four trials using a separate butterfly for each trial; releasing an
149 individual at either 5 m or 30 m from the edge on both sides of the boundary (i.e. two trials on

150 each side of the edge; Fig. 1). This gave us a total of 72 trials using 72 butterflies. We chose
151 these distances because at 5 m into pines, the edges were easily visible, but at 30 m, the dense
152 pines made it hard to see the edge.

153 Before any observations commenced at a site, the four butterflies needed for trials were captured
154 using large hand nets (one net to a butterfly) to ensure the same butterfly was not used more than
155 once. Butterflies were allowed to settle in their net for 10 minutes without an observer present
156 before observations began. Trials in the matrix were usually performed with butterflies captured
157 from the nearest woodland fragment, as individuals were scarce in pines and farmland.

158 Individuals were released from nets at ground level and followed by a single observer from a
159 distance of at least five metres (to avoid disturbing the butterfly's natural movements) for 10
160 minutes or until the butterfly was lost from sight ($n = 16$). The butterfly's flight path was
161 recorded; the distance of each flight (a single flight was recorded as the path between take off
162 and when a butterfly came to rest), the direction of each flight, and how this related to the edge
163 (Fig. 2). The distance travelled by a butterfly was estimated to the nearest meter for flights
164 greater than 1 m or nearest 0.1 m for shorter flights, as the observer followed the flight path.
165 Table 1 lists summary statistics derived from flight paths and environmental variables collected
166 during the surveys.

167 We conducted surveys only during favourable weather conditions (i.e. not on days characterized
168 by rain, low-lying cloud cover or high winds) and when the maximum temperature was forecast
169 to be over 21°C (so we could be assured of having several hours in which the butterflies would
170 be active). We began surveys after butterflies had sufficient time to warm and become active and
171 ceased surveys for the particular day if weather conditions became unfavourable and before light
172 levels dropped. This meant we conducted all trials between 9:30am and 4pm.

173 Statistical analyses

174 We combined release point and adjacent area to produce one explanatory variable, 'release
175 location' with six levels: Farm-Patch (i.e. butterfly released in the farmland matrix adjacent to a
176 woodland patch), Farm-Pine, Patch-Farm, Patch-Pine, Pine-Farm and Pine-Patch.

177 To get an overview of butterfly responses to edge type, we scored each flight as one of four
178 categories: never cross the edge; crossed the edge and did not return; crossed the edge then
179 returned, or; up and over, where butterflies flew straight up and out of the habitat soon after
180 observations began (known as 'up and over' behaviour, Walker 1985). This created a sparse
181 matrix when classified by release location, a dataset that could not be effectively modelled. We
182 therefore used pair-wise Fisher's exact tests to test for differences in flight behaviour among
183 release locations, with P values adjusted using the Benjamini-Hochburg method for controlling
184 the family-wise false-discovery rate, with R package fmsb (Nakazawa 2021).

185 We examined whether survey covariates were important to include in models, including date of
186 trial, time of trial, cloud cover, temperature and wind level. Date and cloud cover were strongly
187 correlated (Spearman's Rank Order correlation co-efficient - 0.76) and so date was excluded. We
188 fitted the remaining four survey covariates to the full model described below, but these variables
189 had P values > 0.18 and so had negligible influence on our results and were excluded from the
190 analyses.

191 We measured eight butterfly flight responses to release location and release distance (Table 1).
192 'Final distance from edge' and 'mean distance per flight' were highly correlated with other
193 variables and were excluded from analysis (Online Resource 1). Therefore six response
194 variables were tested using linear models: number of flights; total distance; furthest from the

195 edge; closest approach to the edge; net displacement, and; furthest into the edge (Table 1). With
196 the exception of 'furthest into the edge', these response variables were fitted against a full model
197 that included explanatory variables of release location (combination of land cover released in and
198 the adjacent land cover, six levels), release distance (5 m, 30 m), and their interaction. We also
199 fitted an additive model without the interaction, and models with just one main effect. We
200 identified the best fitting model using Akaike Information Criteria for small samples (AICc) and
201 plotted effects that were significant ($P \leq 0.05$).

202 For all generalised linear models, we excluded butterflies released in the pine matrix 30 m from a
203 boundary because 11 of 12 butterflies flew up and over. All GLMs included an 'offset variable'
204 (McCullagh and Nelder 1989) to account for differing sampling durations, as six of the
205 observations (excluding pine – 30m releases) were shorter than ten minutes due to the butterfly
206 disappearing from sight.

207 The response variable 'furthest into the edge' only had positive values for animals that crossed
208 the edge, thus all such values coincided with zeros for closest approach to edge and these
209 variables were highly correlated (- 0.849). To analyse 'furthest into the edge' we excluded trials
210 where the animals did not cross the edge (35 trials), reducing the dataset to 25 trials where it was
211 possible to measure this response. We also excluded the only record from farm-pine (butterfly
212 released in farm near a pine edge) because one record is inadequate for analysis. We could only
213 fit main effects of release location and release distance as explanatory variables because only
214 five trials were from 30 m releases, and four of these were from one release location (farm-
215 patch). Release locations included were farm-patch ($n = 10$), patch-farm ($n = 4$), pine-farm ($n =$
216 5), pine-patch ($n = 5$).

217 Analyses were completed using R (R Core Team 2020), including packages lme4 (Bates et al.
218 2015), MuMIn (Barton 2020) and car (Fox and Weisberg 2019).

219

220 **Results**

221 Overall flight patterns

222 Total flight distances averaged 36.5 m (SD = 33.6 m, range 0.5 – 228 m, Online Resource 2) and
223 overall flight patterns are summarised in Fig. 3. The number that never crossed the edge varied
224 significantly with release location (Table 2), with only one of the 24 butterflies released adjacent
225 to pines crossing into pines, and this individual returned to farmland before the end of the
226 observation period (Fig. 3). Butterflies usually crossed from farmland into patches and stayed
227 there, but never crossed from patches into farmland and stayed, nor did they cross into pine and
228 stay (Table 2). A small proportion crossed out of pine into either farmland or patches and stayed
229 (Table 2), but only when within 5 m of the edge (Fig. 3). Up and over behaviour was only
230 observed when butterflies were released in pine (Table 2). Up and over behaviour occurred
231 significantly more frequently at 30 m than at 5 m from the edge (Fig. 3, Fisher's exact test
232 comparing number of up and over vs other responses at the two distances for pine-farm and pine-
233 patch trials, P = 0.0028).

234

235 Release location and release distance analyses

236 We found a significant relationship between a butterfly's closest approach to the edge and the
237 interaction between release location and release distance (Tables 3, 4). Butterflies released in

238 woodland patches 30 m from the edge flew significantly closer to edges of farmland compared to
239 pine plantation, and butterflies released 30 m into farmland moved significantly closer to patches
240 than to pines (Fig. 4a).

241 Butterflies that crossed the edge from pine plantation travelled further into woodland patches
242 compared to any other boundary crossings, although they also moved significant distances away
243 from the edge after crossing from pine to farm, and from farm to patch (Table 4, Fig. 4b).

244 Butterflies released in patches adjacent to pines had significant positive net-displacement
245 indicating they moved further away from the edge, whereas those released in farms adjacent to
246 patches were significantly displaced towards the patches (Table 4, Fig. 4c).

247 Butterflies released 30 m from edges travelled further than those released 5 m from the edge, but
248 release location had no influence (Table 4, Fig. 4d). The furthest distance that butterflies moved
249 away from the edge (on the release side) was also only affected by release distance, with larger
250 distances when released 30 m from the edge (Table 4, Fig. 4e). The number of flights did not
251 depend on release location or distance (Tables 3, 4).

252

253 **Discussion**

254 Faster, more directed movement is often reported when animals, including butterflies, are in non-
255 habitat (Brown et al. 2017; Crone et al. 2019; Schultz et al. 2019), consistent with *H. merope*'s
256 behaviour in pine plantations. *Heteronympha merope* had a strong aversion to exotic pine
257 plantations, escaping as quickly as possible from pines if no edges were in sight, or if edges were
258 perceived, crossing into woodland or pasture then moving away from the edge. Pine plantations
259 had no understorey vegetation (including grasses), offering no food resources. Pine plantations

260 also had a closed canopy, blocking sunlight, which can limit activity and deter butterflies
261 (Bennett et al. 2014). Many other studies have shown edge avoidance by a range of open-habitat
262 species towards forests (Brown et al. 2017; French and McCauley 2019; Haddad 1999),
263 suggesting that high-contrast vegetation types could commonly limit emigration for patch-
264 associated species. Because resource requirements of butterflies (including *H. merope*) overlap
265 with many other insects (New 1997; Thomas 2005), it is likely that dense pine plantations cannot
266 support species from other animal groups. In our study system, this includes native bees nesting
267 above ground, which were completely absent from pines, and flying beetles, with significantly
268 fewer species in pines (Yong et al. 2020).

269 Tree plantations, by eliciting avoidance behaviours, may pose strong fence effects, preventing
270 emigration and leading to increased abundance in enclosed patches (Krebs et al. 1969; Ostfeld
271 1994). Sweeney (2014) observed higher abundance of *H. merope* in woodland patches partially
272 or fully surrounded by a pine matrix than in patches surrounded by farmland. Fence effects can
273 increase population density in the short-term which could increase population persistence, but
274 have a number of risks that could reduce population viability, particularly the risk of resource
275 depletion (Krebs et al. 1969; Ostfeld 1994). We do not know how substantial these risks are in
276 our study system. Further, fence effects may not be the only mechanism contributing to high
277 abundance in remnant woodland with pine edges. Effects of changed bird, reptile and insect
278 predator communities (Lindenmayer et al. 2019; Mortelliti et al. 2015; Sweeney et al. 2015), and
279 possible resources or shelter at plantation edges (Koneri and Nangoy 2019; Toivonen et al. 2017)
280 cannot be ruled out.

281 Although rarely reported in the literature, other butterfly species use up and over behaviour to
282 move over areas of tall trees and forest (Kaye et al. 2011; Ross et al. 2005). However, unlike our

283 observations, the aforementioned studies noted this behaviour only from within habitat patches
284 towards matrix edges. In our study, up and over behaviour was observed only when butterflies
285 were released *within* the matrix, and not for butterflies in patches or farmland adjacent to pine
286 plantations. This is an important difference as it implies that this behaviour is a way to avoid
287 being in pine plantations, rather than a mechanism readily employed to cross over them. Further,
288 the high abundance of *H. merope* in patches embedded in pine (Sweeney 2014) suggests that the
289 up and over mechanism is not frequently used to escape from patches embedded in plantations.

290 Butterflies moved further away from a pine edge when they were in a woodland patch than when
291 they were in farmland. This behaviour could arise if there is a higher predation risk at woodland-
292 pine edges (Haddad and Tewksbury 2005) or if there is lower 'resistance' to movement in
293 favoured woodland habitat (Villemey et al. 2016). An implication of our results is that shallower
294 edge effects (e.g. negative rather than extended negative, Villaseñor et al. 2014) or even positive
295 edge effects, with highest abundance near the edge, may arise when animals enter a low quality
296 area from a lower-quality area because they do not disperse far from the edge.

297 *Heteronympha merope* individuals were able to orientate towards woodland patches at a range of
298 at least 30 m in farmland, but smaller distances in pine plantations. A change in vegetation
299 density or height in the matrix can therefore be expected to affect movement behaviour by
300 altering perceptual range (Biz et al. 2017; Olden et al. 2004). Butterflies typically have relatively
301 short perceptual ranges, often of only tens of meters (MacDonald et al. 2019; Schtickzelle et al.
302 2007), meaning that changes at the relatively large scale of plantation establishment are likely to
303 affect many species. In landscapes where open habitats are being converted to tree plantations
304 (Lindenmayer et al. 2019), a range of species likely face reduced perceptual range, which can
305 increase risk of mortality in the matrix (Awade et al. 2017), and alter connectivity (Brown et al.

306 2017; Pe'er et al. 2011). In our study area, the plantation also reduced connectivity for one of two
307 lizards (Mortelliti and Lindenmayer 2015) and four bird species (Mortelliti et al. 2014).
308 Furthermore, others have reported barrier effects of plantations, such as for small mammals in
309 Chile (Barcelo and Simonetti 2020) and Malaysia (Brunke et al. 2020), birds in Brazil (Giubbina
310 et al. 2018) and spiders in Hungary (Galle et al. 2018). While there are several factors that can
311 affect movement behaviour through fragmented landscapes (Doherty and Driscoll 2018),
312 perceptual range could have a role in the response of animals to plantation establishment.
313 Like the pines, farmland may be a hostile matrix, but with spill-over at the ecotone (e.g. Pe'er et
314 al. 2011). It is possible that *H. merope* cannot always distinguish between farmland and
315 woodland without first 'sampling' the farmland (Fernandez et al. 2016; Ries and Debinski 2001).
316 Our examination of overall flight patterns lends support to this idea, as individuals that crossed
317 over into farmland from woodland patches never stayed, while those crossing from farmland into
318 patches almost always stayed (Table 2, Fig. 3). Further, many individuals avoided approaching a
319 nearby farmland edge if they were released 30 m in woodland (Fig. 4a) and other survey data
320 (Sweaney 2014) showed very low abundance in farmland compared with woodland remnants.
321 Farmland and woodland in our study area both have a range of host plants and food resources
322 (Braby 2005; Orr and Kitching 2010), and scattered paddock trees can provide important
323 structure in farmland (Prevedello et al. 2018). We suggest further research is likely to reveal a
324 continuum of habitat suitability, related to the intensity of land use (e.g. Schwarz and Fartmann
325 2021) and density of woodland trees. More intensively used farmland, such as crops or areas
326 without scattered trees, may offer few resources for insects and act as a matrix (Ng et al. 2021;
327 Salek et al. 2018), while light grazing with substantial tree retention may offer low quality
328 habitat rather than a matrix.

329 Butterflies released further from an edge moved further (Fig. 4d). This partly reflects the larger
330 distance that butterflies had to travel when approaching an edge to interact with it. Butterflies
331 released at 30 m also had larger individual flight distances (mean flight distance was highly
332 correlated with total distance, spearman's correlation = 0.76, Online Resource 1). Fast, straight
333 movements are typically observed in unfavourable habitat as animals attempt to move away
334 (Brown et al. 2017; Schultz et al. 2016). However, this does not explain longer flight distances
335 in *H. merope* released 30 m from the edge because long flights occurred in favoured woodland
336 habitat and the farmland matrix. Perhaps *H. merope* prefers to use short flights near edges to
337 gather information that informs their decision to stay or leave the patch, similar to finer grained
338 flight patterns in other butterfly species when making a decision at a boundary (Fernandez et al.
339 2016). Flight patterns are also influenced by food availability (Evans et al. 2020), so more
340 detailed behavioural observations are needed to understand reduced flight lengths near the edge.

341 In future research, it would be valuable to investigate movement patterns at other times and in
342 both sexes. Butterfly movement across the pine matrix may increase during periods of clear-
343 felling or thinning when the structure is more open. In addition, male *H. merope* butterflies may
344 cross inhospitable boundaries during the mating season, as has been observed in other butterfly
345 species (e.g. Kingsolver 1983; Schultz 1998). Female butterflies often have different dispersal
346 behaviours than males (Turlure et al. 2011), sometimes moving further (Goff et al. 2019; Reim et
347 al. 2019) or moving less (Ehl et al. 2018) than males. Further, butterfly flight capacity can be
348 affected by local and landscape habitat characteristics (Crawford and Keyghobadi 2018), so there
349 is potential for butterflies from different habitats to have different edge responses. Although it
350 will be difficult to capture substantial numbers of butterflies in farmland, future research could

351 investigate whether the source of captured butterflies (woodland vs farmland) influences
352 behavioural responses at edges.

353

354 Management implications

355 Tree plantations and planted forests cover 294 M ha worldwide, increased by 56% between 1990
356 and 2020, and continued expansion is expected (Crawford et al. 2016; FAO 2020; McEwan et al.
357 2020). Over half of plantations consist of native species (56%, FAO 2020), and these can have
358 beneficial effects for some species when established on cleared land (Ashman and Watchorn
359 2019). However, where plantation structure is substantially denser and with a simple understory
360 compared with native vegetation, perhaps the most effective management strategy to enable open
361 woodland specialists to persist is one that increases permeability. By lowering tree density in
362 plantations (Kleintjes et al. 2004; Waltz and Covington 2004), species associated with open land-
363 cover types may cross edges in a similar way to which grassland butterflies can make use of
364 clear-cuts or other forest clearings in Europe (van Halder et al. 2008; Viljur and Teder 2016).
365 Further, establishing corridors of native vegetation or understorey vegetation would increase
366 plantation similarity with open woodland patches, providing species, such as *H. merope*, with
367 resources not available in densely stocked stands (Hartley 2002). Both of these management
368 options are not expected to reduce fibre production (Hartley 2002), therefore protecting the
369 economic investment and return of plantation agencies.

370 A wide range of taxa are disadvantaged by plantations, and intensive agriculture (Bohada-
371 Murillo et al. 2020; Doherty et al. 2020; Giubbina et al. 2018). Our study highlights how
372 behavioural mechanisms contribute to such effects. Butterflies preferred to stay in woodland

373 habitat rather than plantations or farmland, and they appeared to have reduced perceptual range
374 in plantations, leading to complete avoidance of that land-cover type. Consequently, adopting a
375 land-sharing approach (Phalan 2018) by improving landscape structure and permeability for
376 wildlife has potential to increase movement and improve population persistence of many species
377 in highly modified landscapes (Hendershot et al. 2020). Altering the matrix to increase the
378 structural and compositional similarity to native vegetation patches should be part of a range of
379 actions used to enhance successful biodiversity conservation in patchy networks (Arroyo-
380 Rodriguez et al. 2020; Eycott et al. 2012). This is all the more urgent given the spectre of the
381 mass loss of insect biodiversity in highly developed regions of the world associated with
382 landscape transformation (Sanchez-Bayo and Wyckhuys 2019; Wagner et al. 2021; Warren et al.
383 2021).

384 **Acknowledgements**

385 We thank Mason Crane and Rebecca Montague-Drake for their assistance in selecting and
386 locating our study sites. We would also like to thank Ron Sweeney fieldwork assistance and John
387 Stein for Figure 1. We thank private landholders in the Nanangroe area for access to their
388 properties: B. Luff, N. Keatinge, S. Keatinge.

389 **Declarations**

390 **Funding**

391 Funding to support this work has come from the Australian Research Council and the Terrestrial
392 Ecosystem Research Network.

393 **Conflicts of interest/Competing interests (include appropriate disclosures)**

394 Not relevant

395 **Ethics approval (include appropriate approvals or waivers)**

396 Not relevant

397 **Consent to participate (include appropriate statements)**

398 Not relevant

399 **Consent for publication (include appropriate statements)**

400 Not relevant

401 **Availability of data and material (data transparency)**

402 We will deposit the data in a publically accessible data repository.

403 **Code availability (software application or custom code)**

404 Not relevant

405 **Authors' contributions**

406 All authors designed the research. NS collected the data and wrote the first draft with input from

407 DAD and DBL. DAD did the analysis, revised the final manuscript with input from DBL and

408 NS and completed revisions after review.

409

410 **References**

411 Arroyo-Rodriguez V, Fahrig L, Tabarelli M et al (2020) Designing optimal human-modified
412 landscapes for forest biodiversity conservation. *Ecol. Lett.* 23(9):1404-1420

413 Ashman KR, Watchorn DJ (2019) Quantifying landscape change as a consequence of plantation
414 forestry expansion: a case study of the Koala Zone in south-west Victoria. *Australian
415 Forestry* 82(2):116-122

416 Awade M, Candia-Gallardo C, Cornelius C, Metzger JP (2017) High Emigration Propensity and
417 Low Mortality on Transfer Drives Female-Biased Dispersal of *Pyriglena leucoptera* in
418 Fragmented Landscapes. *PLOS ONE* 12(1):e0170493

419 Barcelo M, Simonetti JA (2020) Rewilding clearcuts: shrub vegetation as a facilitator of
420 movement of a forest specialist. *European Journal of Wildlife Research* 66(4):4

421 Barton K (2020) MuMIn: Multi-Model Inference. R package version 1.43.17. <https://CRAN.R-project.org/package=MuMIn>.

423 Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using
424 lme4. *Journal of Statistical Software* 67(1):1-48

425 Bayne EM, Hobson KA (1998) The effects of habitat fragmentation by forestry and agriculture
426 on the abundance of small mammals in the southern boreal mixedwood forest. *Can. J. Zool.
427 / Rev. Can. Zool.* 76(1):62-69

428 Bennett VJ, Betts MG, Smith WP (2014) Influence of thermal conditions on habitat use by a rare
429 spring-emerging butterfly *Euphydryas editha taylori*. *J. Appl. Entomol.* 138(8):623-634

430 Biz M, Cornelius C, Metzger JPW (2017) Matrix type affects movement behavior of a
431 Neotropical understory forest bird. *Perspect. Ecol. Conserv.* 15(1):10-17

432 Bohada-Murillo M, Castano-Villa GJ, Fonturbel FE (2020) The effects of forestry and
433 agroforestry plantations on bird diversity: A global synthesis. *Land Degradation &*
434 *Development* 31(5):646-654

435 Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. *Biological Reviews*
436 87(2):290-312

437 Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating
438 individual behaviour to spatial dynamics. *Biological Reviews* 80:205-225

439 Braby MF (2005) *The Complete Field Guide to Butterflies of Australia*. CSIRO Publishing,
440 Melbourne, Australia.

441 Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of
442 immigration on extinction. *Ecology* 58:445-449

443 Brown LM, Fuda RK, Schtickzelle N et al (2017) Using animal movement behavior to
444 categorize land cover and predict consequences for connectivity and patch residence times.
445 *Landscape Ecol.* 32(8):1657-1670

446 Brunke J, Russo IRM, Orozco-terWengel P et al (2020) Dispersal and genetic structure in a
447 tropical small mammal, the Bornean tree shrew (*Tupaia longipes*), in a fragmented
448 landscape along the Kinabatangan River, Sabah, Malaysia. *BMC Genet.* 21(1):13

449 Chapman DS, Dytham C, Oxford GS (2007) Landscape and fine-scale movements of a leaf
450 beetle: The importance of boundary behaviour. *Oecologia* 154(1):55-64

451 Clobert J, Le Galliard JF, Cote J, Meylan S, Massot M (2009) Informed dispersal, heterogeneity
452 in animal dispersal syndromes and the dynamics of spatially structured populations. *Ecol.*
453 *Lett.* 12(3):197-209

454 Conradt L, Bodsworth EJ, Roper TJ, Thomas CD (2000) Non-random dispersal in the butterfly
455 *Maniola jurtina*: implications for metapopulation models. *Proceedings of the Royal Society*
456 *B-Biological Sciences* 267(1452):1505-1510

457 Crawford DF, O'Connor MH, Jovanovic T et al (2016) A spatial assessment of potential biomass
458 for bioenergy in Australia in 2010, and possible expansion by 2030 and 2050. *GCB*
459 *Bioenergy* 8(4):707-722

460 Crawford LA, Keyghobadi N (2018) Flight morphology corresponds to both surrounding
461 landscape structure and local patch conditions in a highly specialized peatland butterfly
462 (*Lycaena epixanthe*). *Ecol. Entomol.* 43(5):629-639

463 Crone EE, Brown LM, Hodgson JA, Lutscher F, Schultz CB (2019) Faster movement in
464 nonhabitat matrix promotes range shifts in heterogeneous landscapes. *Ecology* 100(7)

465 Crooks KR, Burdett CL, Theobald DM et al (2017) Quantification of habitat fragmentation
466 reveals extinction risk in terrestrial mammals. *Proc. Natl. Acad. Sci. USA.* 114(29):7635-
467 7640

468 Delattre T, Burel F, Humeau A, Stevens VM, Vernon P, Baguette M (2010) Dispersal mood
469 revealed by shifts from routine to direct flights in the meadow brown butterfly *Maniola*
470 *jurtina*. *Oikos* 119(12):1900-1908

471 Doherty TS, Balouch S, Bell K et al (2020) Reptile responses to anthropogenic habitat
472 modification: A global meta-analysis. *Global Ecol. Biogeogr.* 29(7):1265-1279

473 Doherty TS, Driscoll DA (2018) Coupling movement and landscape ecology for animal
474 conservation in production landscapes. *Proceedings of the Royal Society B: Biological*
475 *Sciences* 285(1870)

476 Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and
477 movement: a review. *J. Insect Conserv.* 13(1):3-27

478 Driscoll DA, Banks SC, Barton PS, Lindenmayer DB, Smith AL (2013) Conceptual domain of
479 the matrix in fragmented landscapes. *T.R.E.E.* 28(10):605-613

480 Edwards ED (1973) Delayed Ovarian Development and Aestivation in Adult Females of
481 *Heteronympha Merope merope* (Lepidoptera: Satyrinae). *Aust. J. Entomol.* 12: 92-98

482 Ehl S, Hostert K, Korsch J, Gros P, Schmitt T (2018) Sexual dimorphism in the alpine butterflies
483 *Boloria pales* and *Boloria napaea*: differences in movement and foraging behavior
484 (Lepidoptera: Nymphalidae). *Insect Sci.* 25(6):1089-1101

485 Evans LC, Oliver TH, Sims I et al (2020) Behavioural modes in butterflies: their implications for
486 movement and searching behaviour. *Anim. Behav.* 169:23-33

487 Eycott AE, Stewart GB, Buyung-Ali LM, Bowler DE, Watts K, Pullin AS (2012) A meta-
488 analysis on the impact of different matrix structures on species movement rates. *Landscape*
489 *Ecol.* 27(9):1263-1278

490 FAO (2020) Global Forest Resources Assessment 2020 – main report
491 <https://doi.org/10.4060/ca9825en>. Food and Agriculture Organisation, Rome

492 Fernandez P, Rodriguez A, Obregon R, de Haro S, Jordano D, Fernandez-Haeger J (2016) Fine
493 Scale Movements of the Butterfly *Plebejus argus* in a Heterogeneous Natural Landscape as
494 Revealed by GPS Tracking. *J. Insect Behav.* 29(1):80-98

495 Fletcher RJ, Jr., Maxwell CW, Jr., Andrews JE, Helmey-Hartman WL (2013) Signal detection
496 theory clarifies the concept of perceptual range and its relevance to landscape connectivity.
497 *Landscape Ecol.* 28(1):57-67

498 Fox J, Weisberg S (2019) An R Companion to Applied Regression, 3rd Edition. Thousand Oaks,
499 CA, USA

500 French SK, McCauley SJ (2019) The movement responses of three libellulid dragonfly species to
501 open and closed landscape cover. *Insect Conservation and Diversity* 12(5):437-447

502 Galle R, Szabo A, Csaszar P, Torma A (2018) Spider assemblage structure and functional
503 diversity patterns of natural forest steppes and exotic forest plantations. *For. Ecol. Manage.*
504 411:234-239

505 Garcia VR, Gaspart F, Kastner T, Meyfroidt P (2020) Agricultural intensification and land use
506 change: assessing country-level induced intensification, land sparing and rebound effect.
507 *Environmental Research Letters* 15(8):11

508 Giubbina MF, Martensen AC, Ribeiro MC (2018) Sugarcane and Eucalyptus plantation equally
509 limit the movement of two forest-dependent understory bird species. *Austral Ecol.*
510 43(5):527-533

511 Goff J, Yerke C, Keyghobadi N, Matter SF (2019) Dispersing male *Parnassius smintheus*
512 butterflies are more strongly affected by forest matrix than are females. *Insect Sci.*
513 26(5):932-944

514 Grant TJ, Parry HR, Zalucki MP, Bradbury SP (2018) Predicting monarch butterfly (*Danaus*
515 *plexippus*) movement and egg-laying with a spatially-explicit agent-based model: The role
516 of monarch perceptual range and spatial memory. *Ecol. Model.* 374:37-50

517 Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape
518 experiment with butterflies. *Ecol. Appl.* 9:621-622

519 Haddad NM, Tewksbury JJ (2005) Low-quality habitat corridors as movement conduits for two
520 butterfly species. *Ecol. Appl.* 15(1):250-257

521 Hansen NA, Driscoll DA, Michael DR, Lindenmayer DB (2020) Movement patterns of an
522 arboreal gecko in fragmented agricultural landscapes reveal matrix avoidance. *Anim.*
523 *Conserv.* 23:48-59

524 Hanski I (1998) Metapopulation dynamics. *Nature* 396(6706):41-49

525 Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. *For.*
526 *Ecol. Manage.* 155(1-3):81-95

527 Hendershot JN, Smith JR, Anderson CB et al (2020) Intensive farming drives long-term shifts in
528 avian community composition. *Nature* 579(7799):393-+

529 Kaye TN, Stanley AG, Ross D (2011) Dispersal behavior and habitat selection of Taylor's
530 checkerspot butterfly. Progress report. Institute for Applied Ecology, Corvallis, Oregon and
531 US Fish and Wildlife Service, Lacey, Washington

532 Kingsolver JG (1983) Ecological significance of flight activity in *Colias* butterflies: implications
533 for reproductive strategy and population structure. *Ecology* 64: 546-551

534 Kleintjes PK, Jacobs BF, Fettig SM (2004) Initial response of butterflies to an overstory
535 reduction and slash mulching treatment of a degraded pinon-juniper woodland. *Restor. Ecol.*
536 12(2):231-238

537 Koneri R, Nangoy MJ (2019) Butterfly community structure and diversity in Sangihe Islands,
538 north Sulawesi, Indonesia. *Appl. Ecol. Environ. Res.* 17(2):2501-2517

539 Kormann UG, Scherber C, Tscharntke T, Batary P, Rosch V (2019) Connectedness of habitat
540 fragments boosts conservation benefits for butterflies, but only in landscapes with little
541 cropland. *Landscape Ecol.* 34(5):1045-1056

542 Krebs CJ, Keller BL, Tamarin RH (1969) *Microtus* population biology - demographic changes in
543 fluctuating populations of *M-ochrogaster* and *M-pennsylvanicus* in southern Indiana.
544 Ecology 50(4):587-&

545 Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of
546 matrix habitats as conduits and barriers for dispersal. Ecology 91(4):944-950

547 Lindenmayer DB, Blanchard W, Westgate MJ et al (2019) Novel bird responses to successive,
548 large-scale, landscape transformations. Ecol. Monogr. 89(3):e01362. 10.1002/ecm.1362

549 Lindenmayer DB, Cunningham RB, MacGregor C, Tribolet C, Donnelly CF (2001) A
550 prospective longitudinal study of landscape matrix effects on fauna in woodland remnants:
551 experimental design and baseline data. Biol. Conserv. 101(2):157-169

552 Lindenmayer DB, Fischer J, Felton A et al (2008) Novel ecosystems resulting from landscape
553 transformation create dilemmas for modern conservation practice. Conservation Letters
554 1(3):129-135

555 Liu WJ, Hughes AC, Bai Y, Li ZJ, Mei CC, Ma YX (2020) Using landscape connectivity tools
556 to identify conservation priorities in forested areas and potential restoration priorities in
557 rubber plantation in Xishuangbanna, Southwest China. Landscape Ecol. 35(2):389-402

558 Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small
559 populations. Am. Nat. 146:489-518

560 MacDonald ZG, Acorn JH, Zhang J, Nielsen SE (2019) Perceptual range, targeting ability, and
561 visual habitat detection by greater fritillary butterflies *Speyeria cybele* (Lepidoptera:
562 Nymphalidae) and *Speyeria atlantis*. Journal of Insect Science 19(4):10

563 McCullagh P, Nelder JA (1989) Generalized Linear Models (Second Edition). Chapman and
564 Hall, London

565 McEwan A, Marchi E, Spinelli R, Brink M (2020) Past, present and future of industrial
566 plantation forestry and implication on future timber harvesting technology. *Journal of*
567 *Forestry Research* 31(2):339-351

568 Mony C, Abadie J, Gil-Tena A, Burel F, Ernoult A (2018) Effects of connectivity on animal-
569 dispersed forest plant communities in agriculture-dominated landscapes. *Journal of*
570 *Vegetation Science* 29(2):167-178

571 Mortelliti A, Lindenmayer DB (2015) Effects of landscape transformation on bird colonization
572 and extinction patterns in a large-scale, long-term natural experiment. *Conserv. Biol.*
573 29(5):1314-1326

574 Mortelliti A, Michael DR, Lindenmayer DB (2015) Contrasting effects of pine plantations on
575 two skinks: results from a large-scale 'natural experiment' in Australia. *Anim. Conserv.*:n/a-
576 n/a

577 Mortelliti A, Westgate MJ, Lindenmayer DB (2014) Experimental evaluation shows limited
578 influence of pine plantations on the connectivity of highly fragmented bird populations. *J.*
579 *Appl. Ecol.* 51(5):1179-1187

580 Nakazawa M (2021) fmsb: Functions for Medical Statistics Book with some Demographic Data.
581 R package version 0.7.1. <https://CRAN.R-project.org/package=fmsb>

582 New TR (1997) Are Lepidoptera an effective 'umbrella group' for biodiversity conservation? *J.*
583 *Insect Conserv.* 1(1):5-12

584 Ng K, Nowrouzi S, Staunton KM, Barton P, Driscoll DA (2021) Ant community responses to
585 farmland use and revegetation in a fragmented agricultural landscape. *Agric., Ecosyst.*
586 *Environ.* 311:107316

587 Nupp TE, Swihart RK (1996) Effect of forest patch area on population attributes of white-footed
588 mice (*Peromyscus leucopus*) in fragmented landscapes. *Can. J. Zool.* 74(3):467-472

589 Öckinger E, Bergman K-O, Franzen M et al (2012) The landscape matrix modifies the effect of
590 habitat fragmentation in grassland butterflies. *Landscape Ecol.* 27(1):121-131

591 Olden JD, Schooley RL, Monroe JB, Poff NL (2004) Context-dependent perceptual ranges and
592 their relevance to animal movements in landscapes. *J. Anim. Ecol.* 73(6):1190-1194

593 Orr A, Kitching R (2010) *The Butterflies of Australia*. Jacana Books, Crows Nest, Australia

594 Ostfeld RS (1994) The fence effect reconsidered. *Oikos* 70(3):340-348

595 Pe'er G, Henle K, Dislich C, Frank K (2011) Breaking Functional Connectivity into
596 Components: A Novel Approach Using an Individual-Based Model, and First Outcomes.
597 *Plos One* 6(8):18

598 Pe'er G, Kramer-Schadt S (2008) Incorporating the perceptual range of animals into connectivity
599 models. *Ecol. Model.* 213(1):73-85

600 Pe'er G, van Maanen C, Turbé A, Matsinos YG, Kark S (2011) Butterfly diversity at the ecotone
601 between agricultural and semi-natural habitats across a climatic gradient. *Divers. Distrib.*
602 17(6):1186-1197

603 Phalan BT (2018) What Have We Learned from the Land Sparing-sharing Model? *Sustainability*
604 10(6)

605 Prevedello JA, Almeida-Gomes M, Lindenmayer DB (2018) The importance of scattered trees
606 for biodiversity conservation: A global meta-analysis. *J. Appl. Ecol.* 55(1):205-214

607 R Core Team (2020) R: A language and environment for statistical computing. Version 4.0.3. R
608 Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Available
609 from <http://www.R-project.org>

610 Reim E, Widderich F, Fischer K (2019) Sexual differences in the morphology and movement of
611 a butterfly: Good shape does not make good dispersers. *Eur. J. Entomol.* 116:468-476

612 Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. *Am. Nat.*
613 158:87-99

614 Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented
615 prairies of Central Iowa. *J. Anim. Ecol.* 70(5):840-852

616 Ross JA, Matter SF, Roland J (2005) Edge avoidance and movement of the butterfly *Parnassius*
617 *smintheus* in matrix and non-matrix habitat. *Landscape Ecol.* 20(2):127-135

618 Salek M, Hula V, Kipson M, Dankova R, Niedobova J, Gamero A (2018) Bringing diversity
619 back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively
620 managed arable farmlands. *Ecol. Indicators* 90:65-73

621 Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of
622 its drivers. *Biol. Conserv.* 232:8-27

623 Schtickzelle N, Joiris A, Van Dyck H, Baguette M (2007) Quantitative analysis of changes in
624 movement behaviour within and outside habitat in a specialist butterfly. *BMC Evol. Biol.* 7

625 Schultz CB (1998) Dispersal behaviour and its implications for reserve design in a rare Oregon
626 butterfly. *Conserv. Biol.* 12:284-292

627 Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. *Ecology*
628 82(7):1879-1892

629 Schultz CB, Haddad NM, Henry EH, Crone EE (2019) Movement and Demography of At-Risk
630 Butterflies: Building Blocks for Conservation. *Annu. Rev. Entomol.* 64(1):167-184

631 Schultz CB, Pe'er BG, Damiani C, Brown L, Crone EE (2016) Does movement behaviour
632 predict population densities? A test with 25 butterfly species. *J. Anim. Ecol.* 86:384-393

633 Schwarz C, Fartmann T (2021) Conservation of a strongly declining butterfly species depends on
634 traditionally managed grasslands. *J. Insect Conserv.* 25(2):255-271

635 Scriven SA, Beale CM, Benedick S, Hill JK (2017) Barriers to dispersal of rain forest butterflies
636 in tropical agricultural landscapes. *Biotropica* 49(2):206-216

637 Sweeney N (2014) Landscape transformation; impact on butterflies and beetles in south-eastern
638 Australia. PhD Thesis. Australian National University, Canberra, ACT, Australia

639 Sweeney N, Driscoll DA, Lindenmayer BD, Porch N (2015) Plantations, not farmlands, cause
640 biotic homogenisation of ground-active beetles in south-eastern Australia. *Biol. Conserv.*
641 186:1-11

642 Thomas CD (2000) Dispersal and extinction in fragmented landscapes. *Proceedings of the Royal*
643 *Society of London Series B-Biological Sciences* 267(1439):139-145

644 Thomas JA (2005) Monitoring change in the abundance and distribution of insects using
645 butterflies and other indicator groups. *Philosophical Transactions of the Royal Society B-*
646 *Biological Sciences* 360(1454):339-357

647 Toivonen M, Peltonen A, Herzon I, Heliola J, Leikola N, Kuussaari M (2017) High cover of
648 forest increases the abundance of most grassland butterflies in boreal farmland. *Insect*
649 *Conservation and Diversity* 10(4):321-330

650 Turlure C, Baguette M, Stevens VM, Maes D (2011) Species-and sex-specific adjustments of
651 movement behavior to landscape heterogeneity in butterflies. *Behav. Ecol.* 22(5):967-975

652 van Halder I, Barbaro L, Corcket E, Jactel H (2008) Importance of semi-natural habitats for the
653 conservation of butterfly communities in landscapes dominated by pine plantations.
654 *Biodivers. Conserv.* 17(5):1149-1169

655 Viljur ML, Teder T (2016) Butterflies take advantage of contemporary forestry: Clear-cuts as
656 temporary grasslands. *For. Ecol. Manage.* 376:118-125

657 Villaseñor NR, Driscoll DA, Escobar M, Gibbons P, Lindenmayer DB (2014) Urbanization
658 impacts on mammals across urban-forest edges and a predictive model of edge effects.
659 *PlosOne* 9(5):e97036

660 Villemey A, Peterman WE, Richard M et al (2016) Butterfly dispersal in farmland: a replicated
661 landscape genetics study on the meadow brown butterfly (*Maniola jurtina*). *Landscape Ecol.*
662 31(7):1629-1641

663 Wagner DL, Fox R, Salcido DM, Dyer LA (2021) A window to the world of global insect
664 declines: Moth biodiversity trends are complex and heterogeneous. *Proc. Natl. Acad. Sci.*
665 USA. 118(2):8

666 Walker TJ (1985) Butterfly migration in the boundary layer. In: Rankin M. A. R. (ed),
667 Migration: Mechanisms and adaptive significance. University of Texas Marine Science
668 Institute, Port Aransas, Tex, USA, pp. 704-723

669 Waltz AEM, Covington WW (2004) Ecological restoration treatments increase butterfly richness
670 and abundance: Mechanisms of response. *Restor. Ecol.* 12(1):85-96

671 Warren MS, Maes D, van Swaay CAM et al (2021) The decline of butterflies in Europe:
672 Problems, significance, and possible solutions. *Proceedings of the National Academy of*
673 *Sciences* 118(2):e2002551117

674 Yong DL, Barton PS, Okada S, Crane M, Cunningham SA, Lindenmayer DB (2020) Conserving
675 focal insect groups in woodland remnants: The role of landscape context and habitat
676 structure on cross-taxonomic congruence. *Ecol. Indicators* 115:11

677

679 **Table 1.** Response variables summarising flights after release. * excluded from analysis due to
680 high correlations with other variables (see Online resource 1).

Variable	Description
Number of flights	Total number of flights (a single flight defined as a butterfly taking off and then coming to rest) performed during observation period
Total distance	Sum of distance of all flights taken during observation time
Furthest from the edge	The furthest the butterfly flew away from the edge during observation period
Closest approach to the edge	The closest the butterfly approached to the edge during observation period (this would be 0 if it crossed over the edge)
Net displacement	Final distance from the edge minus release distance. Negative values where the butterfly was closer to the edge than the release point, positive values if they moved further from the edge.
Furthest into the edge	After crossing an edge, the maximum distance away from the edge that a butterfly flew into the bordering land-cover during observed flight (this would be 0 if they did not cross the edge)
*Final distance from edge	Distance from the edge at the end of the observed flight period (represented as a negative number if it crossed over and stayed in the edge habit)
*Mean distance per flight	The average distance between the sequence of take-offs and landings during the observation period.

681

682 Table 2. Frequency of occurrence of four butterfly flight patterns for six release locations. Never
 683 cross = never cross the edge; cross stay = cross the edge and stayed in the adjacent vegetation
 684 type; cross return = crossed the edge but then returned; up over = flew straight up and out of
 685 release vegetation. Other = number of butterflies with flight behaviour other than the behaviour
 686 being tested. Letters that are the same within each pairwise comparison row indicate responses
 687 were not significantly different at $P \leq 0.05$.

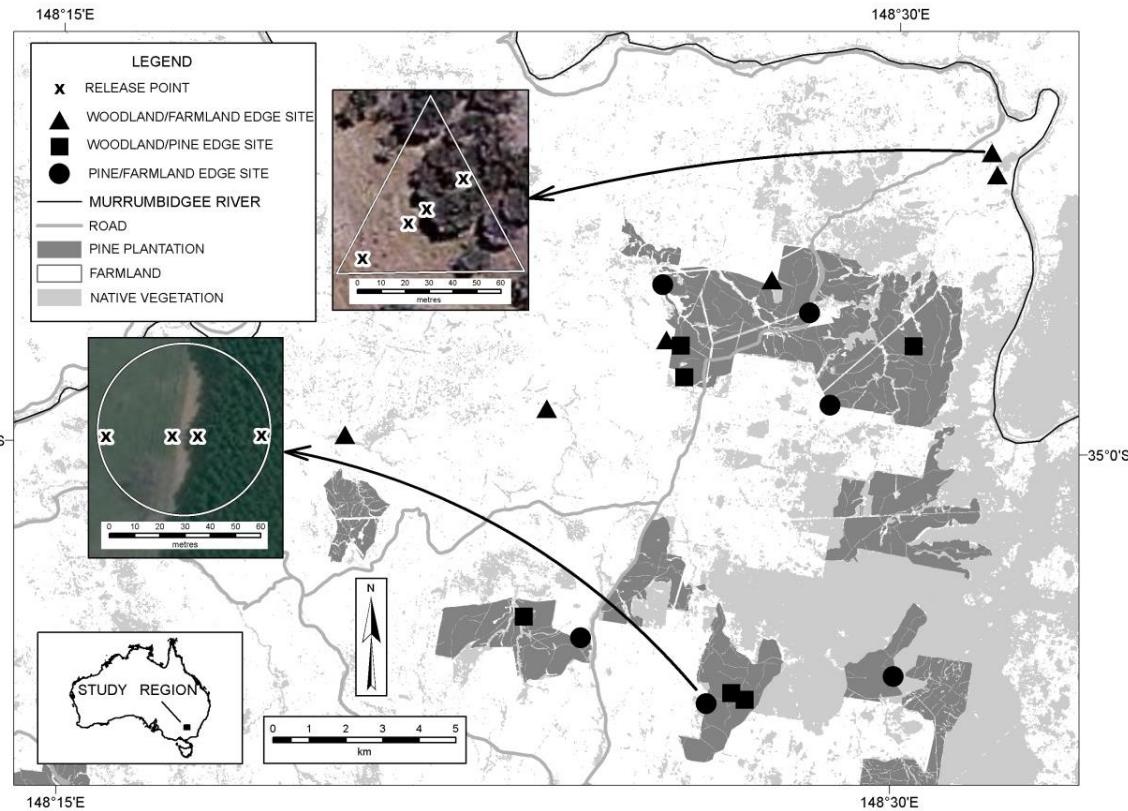
	Farm-Patch	Farm-Pine	Patch-Farm	Patch-Pine	Pine-Farm	Pine-Patch
Pairwise comparison	ab	c	ac	c	ab	b
Never cross	2	11	8	12	2	0
Other	10	1	4	0	10	12
Pairwise comparison	a	b	b	b	ab	ab
Cross stay	9	0	0	0	3	4
Other	3	12	12	12	9	8
Pairwise comparison	a	a	a	a	a	a
Cross return	1	1	4	0	1	0
Other	11	11	8	12	11	12
Pairwise comparison	a	a	a	a	b	b
Up over	0	0	0	0	6	8
Other	12	12	12	12	6	4

688

689

690 **Table 3.** Models fitted to each response variable and Akaike Information Criteria for small
691 samples (AICc).

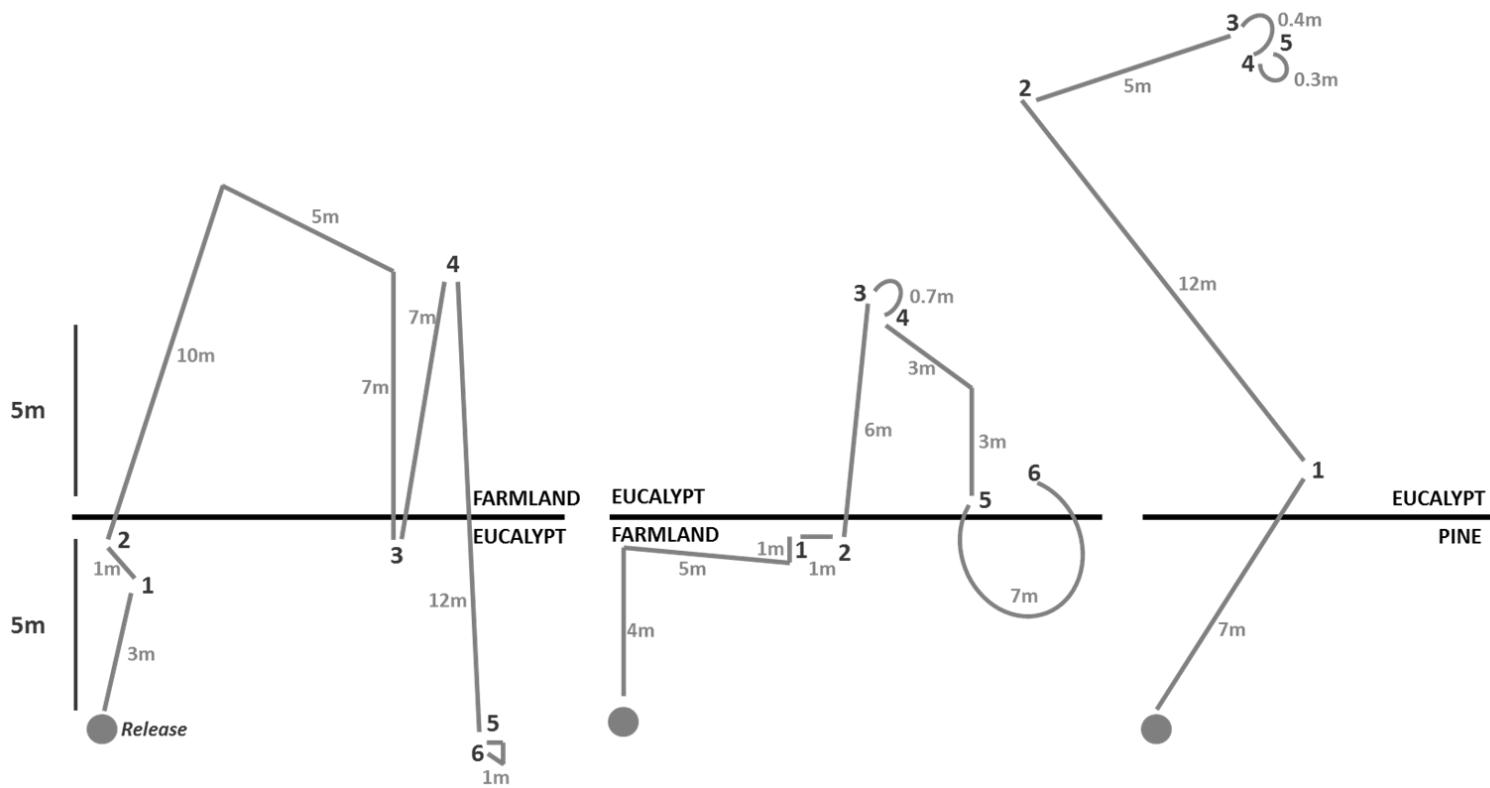
Response	Model fitted	DF	AICc
Closest approach to the edge	release-point * distance	11	433.4
	release-point + distance	8	435.4
	distance	3	440.3
	release-point	7	464.5
Furthest into the edge	release-point * distance	NA	NA
	release-point + distance	6	147.8
	distance	3	146.7
	release-point	5	144.4
Net displacement	release-point * distance	11	574.5
	release-point + distance	8	568.1
	distance	3	571
	release-point	7	566.3
Total distance	release-point * distance	11	609.8
	release-point + distance	8	603.3
	distance	3	591.7
	release-point	7	607
Furthest from the edge	release-point * distance	11	555.4
	release-point + distance	8	551.6
	distance	3	547.3
	release-point	7	566.4
Number of flights	release-point * distance	11	320.9
	release-point + distance	8	314.8
	distance	3	307.6
	release-point	7	312.2


692

693

694 Table 4. Anova tables for the best fitting linear models of flight behaviours.

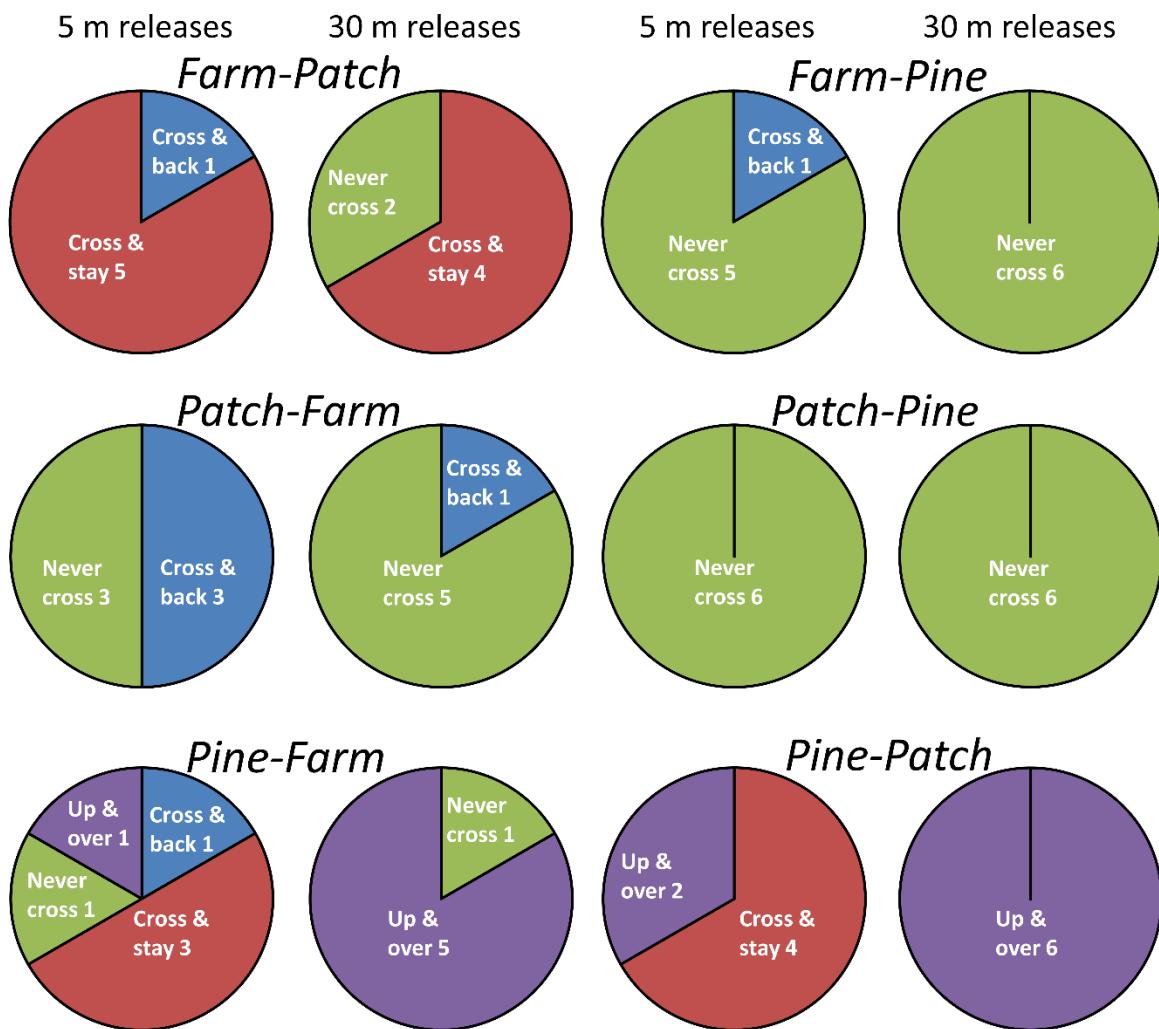
Response	Fitted variable	Sum of			
		squares	DF	F	P value
Closest approach to the edge	release location	1214.7	5	4	0.004
	distance	2533.9	1	41.6	<0.0001
	release	596.5	3	3.3	0.0288
	location:distance				
	residuals	3043.4	50		
Furthest into the edge	release location	161.7	3	3.3	0.0429
	residuals	330.5	20		
Net displacement	release location	9157.7	5	2.9	0.0206
	residuals	33727.8	54		
Total distance	distance	10077.9	1	9.7	0.0029
	residuals	60532.4	58		
Furthest from the edge	distance	12497.9	1	25.1	<0.0001
	residuals	28871.9	58		
Number of flights	distance	0	1	0	0.9925
	residuals	531.4	58		


695

706 **Fig. 1** Left panel: the Nanangroe landscape on the south-west slopes of NSW (SE Australia). Symbols show positions of the 18 study
 707 sites. Butterflies were released at either 5 m or 30 m from the edge on both sides of the edge (shown in insets). One butterfly was used
 708 per trial, resulting in four trials per site, giving 72 trials in total. Right panel: a woodland patch at the edge of a pine matrix.

709

710

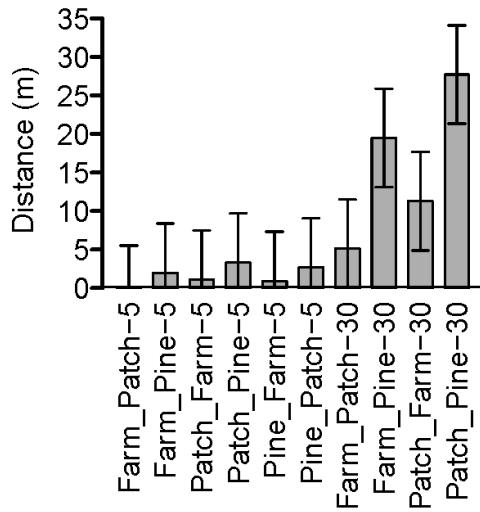


711

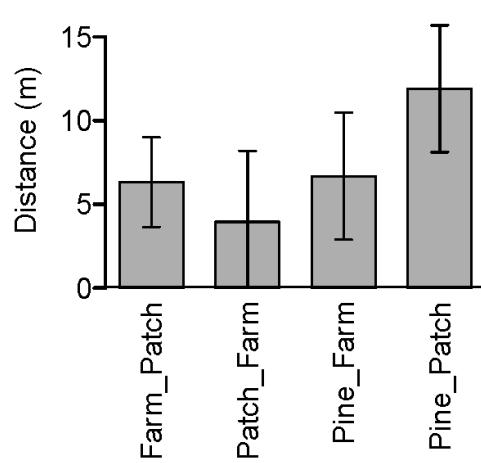
712

713 **Fig. 2** Examples of flight paths for a butterfly released in; a) a woodland patch, 5 m from a
714 farmland edge, b) in farmland, 5 m from a woodland patch edge and c) in pine plantation, 5 m
715 from a woodland patch edge. Movement was recorded for 10 minutes. Flight path shows
716 sequence of flights between stops (bold numbers), direction and distance of each flight (grey
717 numbers)

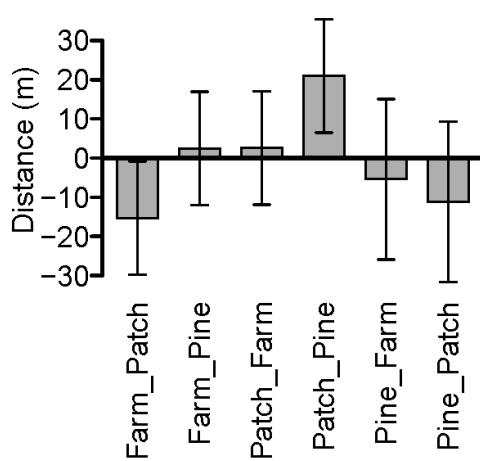
718

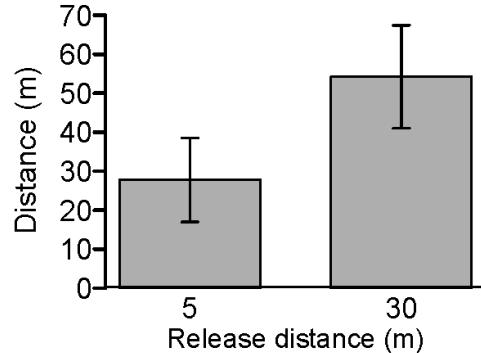

719

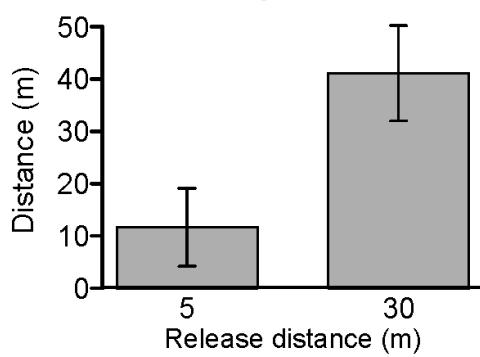
720


721 **Fig. 3** The number of butterflies at each release location and distance that never crossed the edge,
 722 crossed over and stayed in adjacent habitat, crossed over and returned to release habitat, or flew
 723 up and over. The first named land cover type indicates the release location (e.g. Farm-Patch
 724 indicates released in a farm either 5 m or 30 m from the adjacent patch).

725


A. Closest To Edge $P = 0$


B. Furthest In Edge $P = 0.043$


C. Net Displacement $P = 0.021$

D. Total Distance $P = 0.003$

E. Furthest From Edge $P = 0$

727 **Fig. 4** (A) The closest *H. merope* individuals approached edges for the interaction of release
728 location and distance; (B) the distance butterflies flew into the adjacent vegetation type after
729 crossing the edge for the four release locations that could be evaluated, (C) net displacement at
730 the end of the observation period (perpendicular to the edge) for each release location, (D) total
731 distance travelled from the release point for each release distance, (E) the maximum distance
732 moved away from the edge within the release vegetation type, for each release distance. P
733 indicates the P value testing for the displayed effect, with P = 0 indicating $P < 0.0001$. Almost
734 all butterflies released 30 m into pines flew up and over and so this treatment was excluded from
735 analysis. Values are predicted mean distances (m) with 95% confidence intervals.

736

Movement across woodland edges suggests plantations and farmland are barriers to dispersal

Landscape Ecology

N. SWEANEY¹, D. B. LINDENMAYER¹ and D. A. DRISCOLL^{2*},

¹. Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia

². Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125, Australia.

* Corresponding author: d.driscoll@deakin.edu.au, +61 3 9251 7609

Online Resource 1 Spearman correlation coefficients between response variables. Strong correlations (where correlation co-efficient $\geq |0.7|$) are shown in bold type. Furthest into edge only had positive values for animals that crossed the edge, thus all such values coincided with zeros for closest approach to edge and these variables were highly correlated (-0.849). For response variable 'furthest into edge' we therefore excluded all trials where the animals did not cross the edge (35 trials), and calculated correlations with other variables using the reduced dataset (25 trials). Therefore no correlation is available for furthest into edge compared with closest approach to edge because all 25 values for the latter response in the reduced dataset are zero.

	No. flights	Total distance	Mean distance per flight	Closest approach to edge	Furthest from edge	Furthest into edge	Final distance
Total distance	0.541						
Mean distance per flight	-0.043	0.763					
Closest approach to edge	-0.255	-0.096	0.075				
Furthest from edge	0.005	0.454	0.506	0.631			
Furthest into edge	0.051	0.063	0.155	NA	-0.166		
Final distance	-0.114	0.178	0.278	0.792	0.794	-0.421	
Net displacement	-0.151	-0.095	0.007	0.496	0.375	-0.429	0.746

1 **Movement across woodland edges suggests plantations and farmland are barriers to**
2 **dispersal**

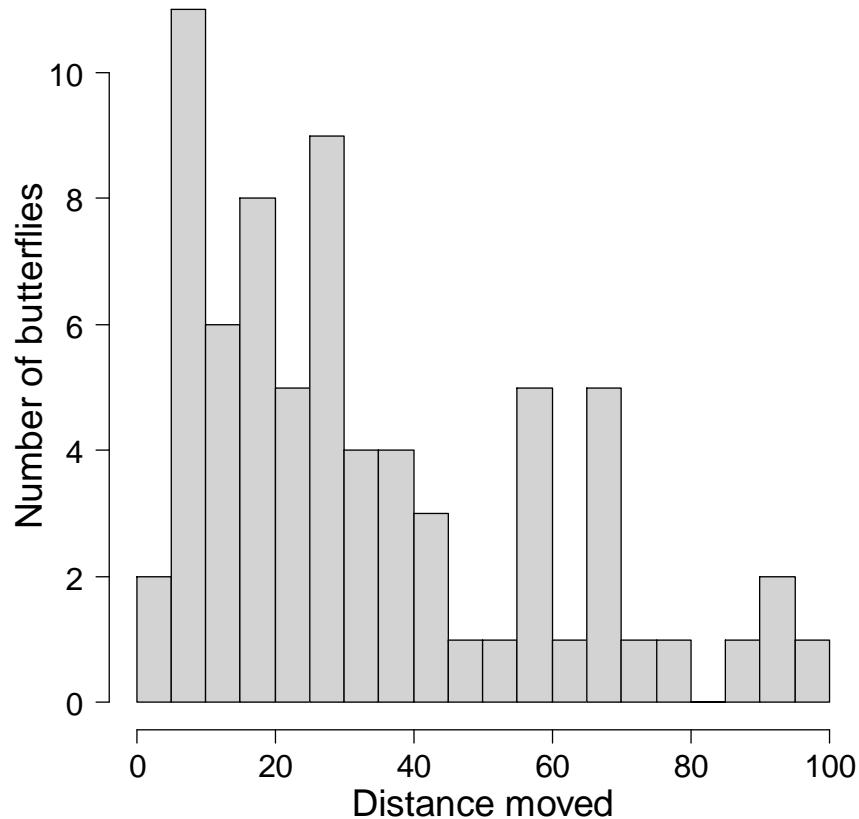
3 Landscape Ecology

4 N. SWEANEY¹, D. B. LINDENMAYER¹ and D. A. DRISCOLL^{2*},

5 ¹ Fenner School of Environment and Society, The Australian National University,

6 Canberra, ACT, 0200, Australia

7 2. Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin


8 University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125,

9 Australia.

10 * Corresponding author: d.driscoll@deakin.edu.au, +61 3 9251 7609

11 **Online Resource 2.** Histogram of distances moved. Plot excludes one flight of 228m for

12 a butterfly released in woodland 30 m from a farm edge.

13